NATIONAL LIBRARY OF MEDICINE

Washington

Founded 1836
U. S. Department of Health, Education, and Welfare Public Health Service

COMPENDIOUS SYSTEM

O F
A
N
A
T
O
M
Y.
IN SIX PARTS.

Part I. osteology.
II. Of the MUSCles, etc.
III. Of the ABDOMEN.

Part IV. Of the thorax.
V. Of the brain and nerves.
VI. Of the SENSES.

ILLUSTRATED WITH TWELVE LARGE COPPERPLATES.

 NOW P U BLISHING,

By THOMAS DOBSON, at the Stone-Houfe, in Second-ftreet, Philadelphia.

A N A T O M Y,

T'HE art of diffecting, or artificially feparating and taking to pieces, the different parts of the human body, in order to an exact difcovery of their fituation, ftructure, "and œconomy.-The word is Greek, araто μ; derived from avart $\mu v \omega$, to diffect, or feparate by cuting.

I NTRODUCTON. § 1. Hifory of Anatomy.

This art feems to have been very ancient; though, for a long time, known only in an imperfect manner. -The firft men who lived muft have foon acquired fome notions of the fructure of their own bodies, particularly of the external parts, and of fome even of the internal, fuch as bones, joints, and finews, which are expofed to the examination of the fenfes in living bodies.
This rude knowledge muft have been gradually improved, by the accidents to which the body is expofed, by the necefities of life, and by the varions cultoms, ceremonies, and fuperftitions, of different nations. Thus, the obfervance of bodies killed by violence, attention to wonnded men, and to many difeafes, the various ways of putting criminals to death, the funeral ceremonies, and a variety of fuch things, muft have fhown men cvery day more and more of themfelves; efpecially as curiofity and felf-lore would here urge them poiverfully to obfervation and reflection.

The brute-creation having fuch an affinity to matz in outward form, motions, fenfes, and ways of life; the generation of the fpecies, and the effect of death upon the body, being obferved to be fo nearly the fame in both; the conclufion was not only obvious, but unavoidable, that their bodies were formed nearly upon the fame model. And the opportunities of examining the bodies of brutes were fo eafily procured, indeed fo neceiffarily occurred in the common bufinefs of life, that the huntfman in making ufe of his prey, the prieft in facrificing, the augur in divination, and, above all, the butcher, or thofe who might out of curiofity attend upon his operations, muft have been daily adding to the little ftock of anatomical knowledge. Accordingly we find, in fact, that the Soith-fea-iflanders, who have been left to thcir own obfervation and reafoning, without the affiftance of letters, have yet a confiderable fhare of rude or wild anatomical and plyyfiological knowledge. Dr Hunter informs us, that when Omai was in his mufeum with Mr Banks, thouph he could not explain himfelf intelligibly, they plainly fav that he knew the principal parts of the body, and fomething likewife of their ufes; and manifefted a great curiofity or defire of having the functions of the internal parts of the body explained to him ; particularly the rclative functions of the two fexes, which with him fcemed to be the moft interefting objeit of the human mind.

We may further imagine, that the philofophers of
the mon early ages, that is, the men of curiofity, obfervation, experience and reflection, could not overlook an inftance of natural organization, which was fo interefting, and at the fame time fo wondcrful, more efpecially fuch of them as applied to the ftudy and cure of difeafes. We know that phyfic was a branch of phrilofophy till the age of Hippocrates.

Thus the art muft have been circumftanced in its beginning. We fhall next fee from the teftimony of hiftorians and other writers, how it actually appeared as an art, from the time that writing was introduced among men; how it was improved and conveyed down to us through a long feries of ages.

Civilization, and improvements of every kind, would naturally begin in fertile countries and healthful climates, where there would be leifure for reflection, and an appetite for amufement. Accordingly, writing, and many other ufeful and ornamental inventions and arts, appear to have been cultivated in the caftern parts of Afia long before the earlieft times that are treated of by the Greek or other European writers; and that the arts and learning of thofe eaftern people were in fubfequent times gradually communicated to adjacent countries, efpecially by the medium of traffic. The cuftoms, fupertitions, and climate of eaftern countries, however, 'appear to have been as unfavourable to praatical anatomy, as they were inviting to the ftudy of aftronomy, geometry, poetry, and all the fofter arts of peace.

Animal bodies there, run fo quickly into naufeous putrefaction, that the early inhabitants muft have avoided fuch offenfive employments, as anatomical inquirics, like thcir pofterity at this day. And, in fact, it does not appear, by the writings of the Grecians, or Jews, or Pliœnicians, or of other eaftern countries, that anatomy was particularly cultivated by any of thofe eaftern nations. In tracing it backwards to its infan. cy, we cannot go farther into antiquity than the times of the Grecian philofophers. As an art in the flate of fome cultivation, it may be faid to have been brought forth and bred up among them as a branch of natural knowledge.

The æra of philofophy, as it was called, began with Thales the Milefian being declared by a very general confent of the people, the moft wife of all the Grecians, 480 years before Chrift. The philofophers of his fcliool, which was called the Ionian, cultivated principally natural knowledge. Socrates, the feventh in fucceffion of their great teachers, introduced the ftudy of morals, and was thence faid to bring down philofophy from heaven, to make men truly wife and happy.

In the writings of his fcholar and fucceffor Plato, we fee that the philofophers had carefully confidered the human body, both in its organization and functions; and though they had not arrived at the knowledge of the more minute and intricate parts, which required the fucceflive labour and attention of many ages, they had made up very noble and comprehenfive ideas of the fubjeet in general. The anatomical defcriptions of Xenophon and Plato have had the honour of being quoted by Longinus ($\$$ xxxii.) as fpecimens of fublime writing: and the extract from Plato is ftill more remarkable for its containing the rudiments of the circulation of the blood. "The heart (fays Plato)
is the centre or knot of the blood-veffels; the fpring or fountain of the blood which is carried impetuoufly round; the blood is the pabulum or food of the fieh; and, for the purpofe of nourifhment, the body is laid out into canals, like thofe which are drawn through gardens, that the blood may be conveyed, as from a fountain, to every part of the pervious body."

Hippocrates was nearly contemporary with the great philofophers of whom we have been feaking, abont 400 years before the Chriftian æra. He is faid to have feparated the profeffion of philofophy and phyfic, and to have been the firft who applied to phyfic alone as the bufinefs of his life. He is likewife generally fuppofed to be the firft who wrote upon anatomy. W'e know of nohhing that was written exprefsly upon the fubject bcfore; and the firft anatomical diffection which has been recorded, was made by his friend Democritus of Abdera.
If, however, we read the works of Hippocrates with impartiality, and apply his accounts of the parts to what we now know of the hunan body, we muft allow his defcriptions to be imperfect, incorrect, fometimes extravagant, and often unintelligible, that of the bones only excepted. He feems to have ftudied thefe with more fuccefs than the other parts, and tells us that he had an opportunity of feeing an human fkeleton.

From Hippocrates to Galen, who flourilhed towards the end of the fecond century, in the decline of the Roman cmpire, that is, in the fpace of 600 years, anatomy was greatly improved; the philofophers fill confidering it as a moft curious and interefting branch of natural knowledge, and the phyficians, as a principal foundation of their art. Both of them, in that interval of time, contributed daily to the common ftock, by more accurate and extended obfervations, and by the. lights of improving philofophy.
As thefe two great men had applied very particularly to the ftudy of animal bodics, they not only made great improvements, efpecially in phyfiology, but raifed the credit of natural knowledge, and fpread it as wide as Alexander's empire.

Few of Ariftotle's writings were made public in his lifetime. He affected to lay that they would be unintelligible to thofe who had not heard them explained at his lectures: and, except the ufe which Theophraftus made of them, they were loft to the public for above 130 years after the death of Theophraftus; and at laft came out defective from bad prefervation, and corrupted by men, who, without proper qualifications, prefumed to correet and fupply what was loft.

From the time of Theophraftus, the 隹列 of natural knowledge at Athens was forcver on the decline; and the reputation of the Lycæum and Academy was almoft confined to the ftudies which are fubfervient to oratory and public fpeaking.

The other great inftitution for Grecian education, was at Alexandria in Egypt. The firf Ptolemies, both from their love of literature, and to give trne and permanent dignity to their empire, and to Alexander's favourite city, fet up a grand fchool in the palace itfelf, with a mufeum and library, which, we may fay, has been the moft famed in the world. Anatomy, among other fciences, was publicly taught; and the two diftinguifhed anatomifts werc Erafiftratus the pupil and fricnd of Theophraftus, and Heroplailus. Their vo-

Tenimus works are all loft ; but they are quoted by Gale $\}$ almult in cvery page. Thefe profeffors were probably the firfe who were anthorized to diffect human boties; a peculiarity which marks ftrongly the philofophical magnanimity of the firft Ptolemy, and fixes a great æra in the hiftory of anatomy. And it was, no doubt, from this particular advantage which the Alexandrians had above all others, that their fchool not only gained, but for many centuries preforved, the firft reputation for medical education. Ammianus Marcellinus, who lived about 650 ycars after the fchools were fet up, fays, they were fo famous in his time, that it was enough to fecure credit to any phyfician, if he could fay he had ftudied at Alexandria.

Herophilus has been faid to have anatomized 700 bodies. We muft allow for exaggeration. Nay, it was faid, that both he and Erafiftratus made it a common practice to open living bodies, that they might difcover the morc fecret fprings of life. But this, no doubt, was only a vulgar opinion, rifing from the prejudices of mankind; and accordingly, without any good reafon, fuch tales have been told of modern anatomifts, and have been believed by the vulgar.

Among the Romans, though it is probable they had phyficians and furgeons from the foundation of the city, yet we have no account of any of thefe applying themfelves to anatomy for a very long timc. Archisgathus was the firf Greek phyfician eftablifhed in Rome, and he was banifhed the city on account of the feverity of his operations.-Afclepiades, who flourinhed in Rome iot years after Archagathus, in the time of Pompey, attained fuch a high rcputation as to be ranked in the fame clafs with Hippocrates. He feemed to have fome notion of the air in refpiration acting by its weight; and in accounting for digeftion, he fuppofed the food to be no farther changed than by a comminution into extrentely fmall parts, which being diftrihuted to the feveral parts of the body, is affimilated to the nature of each. One Caffius, commouly thought in be a difciple of Afclepiades, accounted for the right fide of the body becoming paralytic on harting the left fide of the brain, in the faine manneras has been done by the moderns, viz. by the croffing of the nerves from the right to the left fide of the brain.

From the time of Afclepiades to the fecond century, pliyficians feem to have been greatly encouraged at Rome; and, in the writings of Celfus, Rufus, Pliny, Cœelius, Aurelianus, and Aræteus, we find fevcral anatomical obfervations, but moftly very finperficial and inaccuratc. Towards the end of the fecond century lived Claudius Gallenus Pergamus, whofe name is fo well known in the medical world. He applied himfelf particularly to the fludy of anatomy, and did more in that way than all that went before him. He feems, however, to have been at a great lofs for human fubjects to operate upoin; and therefore his dcfcription of the partsare mofly taken from brute animals. His works contain the fulleft hiftory of anatomifts, and the moft completc fyfiem of the ficience, to be met with any where before him, or for feveral centuries after; fo that a number of pallages in them were reckoned abfolutely unintclligible for many agcs, until explained by the difeoveries of fuccecding anatomifts.

Aboirt the end of the fourth century, Nimefius biflop of Enifa wrote a treatifc on the nature of man,
in which it is faid were contained two celebrated modern difcoveries; the one, the ufes of the bile, boafted of by Sylvius de la Boe; and the other, the circulation of the blood. This laft, however, is proved by Dr Friend, in his Hiftory of phyfic, p. 229. to be falfely afcribed to this aithor.

The Roman cmpire beginning now to be oppreffed by the barbarians, and funk in grofs fupcrftition, learning of all kinds decreafed; and when the empire was totally overwhelmed by thofe barbarous nations, every appearance of fcience was almoft extinguifhed in Europe. The only remains of it were among the Arabians in Spain and in Afia.-The Saracens who came into Spain, deftroyed at firft all the Greek books which the Vandals had fpared: but though their government was in a conftant ftruggle and fluctuation during 8co years before they were driven out, they received a tafte for learning from their countrymen of the eaft; fevcral of their princes encouraged liberal ftudies; public fchools were fet up at Cordova, Toledo, and other towns, and tranlations of the Greeks into the Arabic were univerfally in the hands of thcir teachers.
Thus was the learning of the Grecians transferred to the Arabians. But though they had fo good a foundation to build upon, this art was never improved while they were matters of the world: for they were fatiffied with commenting upon Galen; and fcem to have made no diffections of human bodies.

Abdollaliph, who was himfelf a teacher of anatomy, a man eminent in his time (at and before 1203) for his learning and curiofity; a great travcller, who had been bred at Bagdad, and had feen many of the great citics and principal places for fludy in the Saracco empire ; who had a favourable opinion of original obfervation, in oppofition to book-learning; who boldly corrected fome of Galen's errors, and was perfuaded that many more might be detected; this man, we fay, never made or faw, or feemed to think of a human diffection. He difcovered Galen's errors in the ofteology, by going to burying-grounds, with his ftudents and others, where he exanined and demonftrated the bones; he earnefly recommended that method of fudy, in preference even to the reading of Galen, and thoaght that many farther improvements might be made; yet he feemed not to lave an ideathat a frefh fubject might be diffected with that view.
Perhaps the Jevifh tenets, which the Mahometans adopted, about uncleanlinefs and pollution, might prevent their handling dead bodies; or their opinion of what was fuppofed to f afs between an angel and the dead perfon, might make them think difturbing the dead highly facrilegious. Such, however, as Arabian learning was, for nany ages togethcr there was hardly any other in all the welfern countries of Europe. It was introduced by the eftablifhment of the Saracens in Spain in 711, and kept its grome till the reftoration of learning in the end of the 15 th century. The ftate of anatomy in Europe, in the times of Arabian influcnce, may be feen by reading a very fhort fyftem of anatomy drawn up by Mundinns, in the year 1315. It was extracted principally from what the Arabians had preferved of Galen's doctrine; and, rude as it is, in that age, it was judged to be fo mafterly a performance. that it was ordered by a pullic decree, that it Thould be read in all the fchools of Italy; and it actually con-
innes
tinued to be almoft the only book which was read upon the fubject for above 200 years. Cortefius gives him the credit of being the great reftorer of anatomy, and the firt who difiected human bodies among the moderns.

A general prejudice againft diffection, however, prevailed till the 16 th century. The emperor Charles V. ordcred a confultation to be held by the divines of Salamanca, in order to determine whether or not it was lawful in point of confcience to diffect a dead body. In Mufcovy, till very lately, both anatomy and the ufe of fkeletons were forbidden, the firlt as inhuman, and the latter as fubfervient to witchcraft.

In the beginning of the 15 th century, learning revived conliderably in Europe, and particularly phyfic, by means of copies of the Greek authors brought from the fack of Conftantinople; after which the number of anatomitts and anatomical books increafed to a prodigious degree.-The Europeans becoming thus pofferfed of the antient Greek fathers of medicine, were for a long time fo much occupied in corresting the copies they could obtain, ftudying the meaning, and commenting upon them, that they attempted nothing of their own, efpecially in anatomy.

And here the late Dr Hunter introduces into the annals of this art, a genius of the firf rate, Lconardo da Vinci, who had been formerly overlooked, becaufe he was of another profeffion, and becauie he publifhed nothing upon the fubject. He is confidered by the Doctor as by far the beft anatomift and phyfiologift of his time ; and was certainly the firft man we know of who introduced the practice of making anatomical drawings.

Vaffare, in his lives of the painters, fpeaks of Leonardo thus, after telling us that he had compofed a book of the anatomy of a horfe, for his own ftudy : "He afterwards applied himfelf with more diligence to the human anatomy ; in which ftudy he reciprocally received and communicated affiftance to Marc. Antonio della Torre, an excellent philofopher, who then read lectures in Pavia, and wrote upon this fubject; and who was the firf, as I have heard, who began to illuftrate medicine from the doetrinc of Galen, and to give true light to anatomy, which till that time had been involved in clouds of darknefs and ignorance. In this he availed himfelf exceedingly of the genius and labour of Leonardo, who made a book of fudies, drawn with red chalk, and touched with a pen, with great diligence, of fuch fubje ats as he had bimfelf diffected; where he made all the bones, and to thofe he joined, in their order, all the nerves, and covered them with the mufcles. And concerning thofe, from part to part, he wrote remarks in letters of an ugly form, which are written by the left hand, backwards, and not to be underftood but by thofe who know the method of reading them; for they are not to be read without a looking-glafs. Of thefe papers of the human anatomy, there is a grcat part in the poffeffion of M. Francefco da Melzo, a Milanefe gentleman, who, in the timc of Leonardo, was a moft beautiful, boy, and much beloved by him, as he is now a beautiful and genteel old man, who reads thofe writings, and carefully preferves them, as precious reliets, together with the portrait of Leonardo, of happy memory. It appears impoffible that that divine fpirit flould reafon fo well upon the arterics, and mufcles,
and nerves, and veins; and with fuch diligence of every thing, \&c. \&c."

Thofe very drawings and the writings are happily found to be prelerved in his BritannicMajefty's great collection of original drawings, where the Dotor was permitted to examine them ; and his fentiments upon the occafion he thus expreffes: "I expcited to fee little more than fuch defigns in anatomy, as might be ufeful to a painter in his own profeffion; but I faw, and indeed with aftonifhment, that Leonardo had been a general and a deep fludent. When I confider what pains he has taken upon every part of the body, the fuperiority of his univerfal genius, his particular excellence in mechanics and hydraulics, and the attention with which fuch a man would cxamine and fee objects which he was to draw, I am fully perfuaded that Lconardo was the beft anatomift at that time in tine world. We muft give the isth century the credit of Leonardo's anatomical fudies, as he was 55 years of age at the clofe of that century."
In the beginning of the x6th century, Achillinus and Bencdictus, but particularly Berengarius and Maffa, followed out the improvement of a natomy in Italy, where they taught it, and publified upon the fubjeit. There firft improvers made fome difcoveries from their own diflectious: but it is not furprifing that they fhould have been diffident of themfelves, and have followed Galen almof blindly, when his authority had been fo long eftablifhed, and when the enthufiam for Greek authors was rifing to fuch a pitch.

Soon after this, we may fay about the year 1540, the great Vefalins appeared. He was ftudious, laborious, and ambitions. From Bruffels, the place of his birth, he went to Louvain, and thence to Paris, where anatomy was not yet making a confiderable figure, and then to Louvain to teach; from which place, very fortunately for his reputation, he was called to Italy, where he met with every opportunity that fuch a genius for anatomy conld defire, that is, books, finbjects, and excellent draughtfmen. He was equally laborious in reading the ancients, and in diffecting bodies. And in making the comparifon, he could not but fee, that there was great room for improvement, and that many of Galen's defcriptions were erroncous. When he was but a young man, he publifhed a noble fyftem of anatomy, illuftrated with a great number of elegant fi-gures.-In this work he found fo many occalions of correcting Galen, that his contemporaries, parcial to antiquity, and jealous of his reputation, complained that he carried his turn for improvement and criticifms to licentionfnefs. The fpirit of oppofition and emulation was prefently roufed ; and Sylvius in France, Columbus, Fallopius, and Euftachius in Italy, who were all in high anatomical reputation about the middle of this 16th century, endeavoured to defend Galen at the expence of Vefalius. In their difputes they made their appeals to the human body : and thus in a few years the art was greatly improved. And Vcfalins being detected in the very fault which he condenned in Galen, to wit, defcribing from the diffections of brutes, and not of the human body, it expofed fo fully that blunder of the older anatomifts, that in facceeding times there has been little reafon for fuch complaint.-Befides the above, lie publifhed feveral other anatomical treatifes. He has becn particularly ferviceable by im-
pefing:
pofing names on the mufcles, mof of which are retained to this day. Formerly they were diftinguifhed by numbers, which were differently applied by almoft e very author.
In 156 I, Gabriel Fallopius, profeffor of anatomy at Padua, publifhed a treatife of anatomy under the title of Observationes Anatomica. This was defigned as a fupplenent to Vefalius; many of whofe defcriptions he correets, though he always makes mention of him in an honourable manner. Fallopius made many great difcoveries, and his book is well worth the perufal of every anatomift.
In 1563 , Bartholomæus Euftachius publifhed his 0 puf cula Anatomica at Venice, which have ever fince been juifly admiired for the exactnefs of the defcriptions, and the difcoveries contained in them. He publifhed afterwards fome oth er pieces, in which there is little of anatony; but never publifhed the great work he had promifed, which was to be adorned with copperplates reprefenting all the parts of the human body. Thefe plates, after lying buried in an old cabinet for upwards of 150 years, were at laft difcovered and publiihed in the year 1714, by Lancifi the pope's phyfician ; who added a fhort explicatory text, becaufe Euftachius's own writing could not be found.
From this time the fudy of anatomy gradually diffufed itfclf over Europe; infomuch that for the laft hundred years it has been daily improving by the labour of a number of profeffed anatomifts almof in every country of Europe.

We may form a judgment about the fate of anatomy cven in Italy, in the beginning of the 17 th century, from the information of Cortefius. He had been profeffor of anatomy at Bologna, and was then profeffor of medicine at Maffana; where, though he had a great defire to improve himfelf in the art, and to finifl a treatife which he had begun on practical anatomy, in 24 years he could twice only procure an opportunity of diffecting a human body, and then it was with difficulties and in hurry; whereas he had expected to have done fo, he fays, once every year, according to the cuffom in the famous academies of Italy.

In the very end of the 16th century, the great Harvey, as was the cuftom of the times, went to Italy to ftudy medıcine; for Italy was fill the favourite feat of the arts: And in the very beginning of the 17 th century, foon after Harvey's return to England, his mafter in anatomy, Fabricius ab Aquapendente, publifhed an account of the valves in the veins, which he had difcovered many years before, and no doubt taught in his lectures when Harvey attended him.

This difcovery evidently affected the eftablifhed doctrine of all ages, that the vcins carried the blood from the liver to all parts of the body for nourifhment. It fet Harvey to work upon the ufe of the heart and vafcular fyfems in animals; and in the courfe of fome years he was fo happy as to difcover, and to prove beyond all poffibility of doubt, the circulation of the blood. He tanght his new doctrine in his lectures about the year 16 I 6 , and printed it in 1628 .

It was by far the moft important ftcp that had been made in the knowledge of animal bodies in any agc. It not only reflected ufeful lights upon what had been already found out in anatomy, but alfo pointed out the means of furcher inveftigation. And accordingly we
fee, that from Harvey to the prefent time, anatomy las been fo much improved, that we may rcafonably queftion if the ancients have been further outdone by the moderns in any other branch of knowledge. From one day to another there has been a conftant fucceffion of difcoveries, relating either to the fructure or functions of our body ; and new anatomical proceffcs, both of inveftigation and demonftration, have been daily invented. Many parts of the body, which were not known in Harvey's time, have fince then been brought to light : and of thofe which were known, the internal compofition and functions remained unexplained; and indeed muft have remained unexplicable withont the knowledge of the circulation.

Harvey's doctrinc at firf met with confiderable oppofition ; but in the fpace of about 20 years it was fo generally and fo warmly embraced, that it was imagined every thing in phyfic would be explained. But time and experience have taught us, that we fill are, and probally muft long continue to be, very ignorant; and that in the fludy of the human body, and of its difeafes, there will always be an extenfive field for the exercife of fagacity.
After the difcovery and knowledge of the circulation of the blood, the next queftion would naturally have been about the paffage and route of the nutritious part of the food or cliyle from the bowels to the bloodveffels: And, by good fortune, in a few years after Harvey had made his difcovery, Afellius, an Italian phyfician, found out the lacteals, or veffels which carry the cliyle from the inteftines; and printed his account of them, with coloured prints, in the year 1627, the very year before Harvcy's book came out.

For a number of years after thefe two publications, the anatomifts in all parts of Europe were daily opening living dogs, either to fee the lacteals or to obferve the phenomena of the circulation. In making an experiment of this kind, Pecquet in France was fortunate enough to difcover the thoracic duct, or common trunk of all the lacteals, which convess the clyyle into the fubclavian vein. He printed his difcovery in the year 1651. And now the lacteals having been traced from the inteftines to the thoracic duct, and that duet having been traced to its termination in a blood-veffel, the paffage of the chyle was completely made out.

The fame practice of opening living animals furnifhed occafions of difcovering the lymphatic veffels. This good fortune fell to the lot of Rudbec firit, a young Swedinı anatomift; and then to Thomas Bartholine, a Danifh anatomift, who was the firft who appeared in print upon the lymphatics. His book came out in the year 1653, that is two years after that of Pecquet. And then it was very evident that they had been feen before by Dr Higmore and others, who liad mifiaken them for lacteals. But none of the anatomifts of thofe times could makc out the origin of the lymphatics, and none of the phyfiologifts could give a fatisfactory account of their ufe.
The circulation of the blood and the paffage of the chyle having been fatisfactorily traced out in full-grown animals, the anatomifts were naturally led next to confider how thefe animal proceffcs were carried on in the child while in the womb of the mothcr. Accordingly the malc and female organs, the appearances and contents of the pregnant uterus, the incubated egg, and
every phenomenon which could illuftrate generation, became the favourite fubject, for about 30 years, with the principal anatomifts of Europe.

Thus it would appear to have been in theory: but Dr Hunter believes, that in fact, as Harvey's mafter Fabricius laid the foundation for the difcovery of the circulation of the blood by teaching him the valves of the veins, and thereby inviting him to confider that fubject; fo Fabricius by lis lectures, and by his elegant work De formato fotu, et de fornatione ovi et pulli, probably made that likewife a favourite fubject with Dr Harvey. But whether he took up the fubject of generation in confequence of his difcovery of the circulation, or was led to it by his honoured mafter E'abricius, he fpent a great deal of his time in the inquiry ; and publithed his obfervations in a book De gencratione animalium, in the year 165 I , that is fix years before his death.

In a few years after this, Swammerdam, Van Horn, Steno, and De Graaf, excited great attention to the fubject of generation, by their fuppofed difcovery that the females of viviparous animals have ovaria, that is, clufters of eggs in their loins, like oviparous animals; which, when impregnated by the male, are conveyed into the uterus: fo that a child is produced from an egg as well as a chick; with this difference, that one is hatched within, and the other without, the body of the mother.

Malpighi, a great Italian genius, fome time after, made confiderable advances upon the fubject of genesation. He had the good fortune to be the firlt who ufed magnifying glaffes wih addrefs in tracing the firt appearances in the formation of animals. He likewife made many other obfervations and improvements in the minutice of anatomy by his microfcopical labours, and by cultivating comparative anatomy.

This diftinguifhed anatomift gave the firf public fpecimen of his abilities, by printing a differtation on the lungs anno 1661; a period fo remarkable for the ftudy of nature, that it would be injuftice to pafs it without particular notice.

At the fame time flomithed Laurentius Bellinus at Florence, and wes the firt who introduced mathematical reafoning in phyfic. In 1652, Simon Pauli publifhed a treatife De albardis offibus. He had long been admired for the white fleletons he prepared; and at laft difcovered his method, which was by expofing the bones all winter to the weather.

Johannes Swammerdain of Amfterdam alfo publifhed fome anatomical treatifes; but was moft remarkable for his knowledge of preferving the parts of bodies entire for many years, by injecting their veffels. He alfo publinhed a treatife on refpiration; wherein he mentioned his having figures of all the parts of the body as bigas the life, cut in copper, which he defigned to publifh, with a complete fyftem of anatomy. Thefe, however, were never made public by Swanmerdam; but, in 1683, Gothofridus Bidloo, profeffor of anatomy at L.eyden, publifhed a work intitled Anatoniia corporis homani, where all the parts were delineated in very large plates almoft as big as the life. Mrr Cowper, an Engliih furyeon, bouglit 300 copies of thefe figures; and in I693, prablifhed them with an Englifh iext, quite different from Bidloo's Latin one ; to which were added letters in Didloo's figures, and fome few figures
of Mr Cowper's own. To this work Cowper's name was prefixed, without the leaft mention of Bidloo, except on purpofe to confutc him. Bidloo immediately publifhed a very ill-natured pamphlet, called Guliehunis Cowperus citatus corame tribunali; appealing to the Royal Society, how far Cowper onght to be punifhed as a plagiary of the worft kind, and endea vouring to prove him an ignorant deceitful fellow. Cowper anfivered him in his own fyle, in a pamphlet called lis Vindicié; endeavouring to prove, either that Bidloo did not underftand his own tables, or that they were none of his. It was even alleged that thofe were the tables promifed by Swammerdam, and which Bidloo had got from his widow. This, however, appears to have been only an invidious furmife, there bting unqueftionable evidence that they were really the performance of Bidloo.

Soon after, JIbrandus Diembroeck, profeflor of anatomy at Utrecht, began to appear as an author. His work contained very little original; but he was at great pains to collect from others whatever was valuable in their writings, and his fyftem was the common ftandard among anatomical ftudents for many years.

About the fame time, Antonius Liewenhoeck of Delft, improved confiderably on Malpighi's ufe of microfcopes. Thefe two authors took up anatomy where others liad dropt it; and, by this new art, they brought a number of annazing things to light. They difcovered the red globules of the blood; they were enabled to fee the actual circulation of the blood in the tranfparent parts of living animals, and could meafure the velocity of its motion ; they difcovered that the arteries and veins had no intermediate cells or fpungy fubfance, as Harvey and all the preceding anatomits liad fuppofed, but communicated one with the other by a continnation of the fame tube.

Liewenhoeck was in great fanse lileerrife for his difcovery of the animalcula in the feuren. Indeed there was fcarcely a part of the bolly, folid or fluid, which cfcaped his examination; and lie almoft every where found, that what appeared to the naked cye to be rude undigefted matter, was in reality a beantiful and regular compound.

After this period, Nuck adeed to our knowledge of the abforbent fyftem aiready mentioned, by his injections of the lymphatic glands; Ruyfch, by his defcription of the valves of the lymphatic veffels; and Dr Meckel, by his accurate account of the whole fyftem, and by tracing thofe veffels in many parts where tbey had not before been defrribed.

Befides thefe authors, Drs Hunter and Nouro have called the attention of the public to this part of anatomy , in their controverfy concerning the difonery of the office of the lymplatics.

When the lymphatic veffels were firft feen and traced into the thoracic duct, it was natural for anarmits to fufpest, that as the lacteals abforbed from the cavity of the inteftines, the lymphatics, which are fimilar in figure and ftructure, might foffibly do the fame oflice with refpect to other parts of the body: and accordincly, Dr Glifion, who wrote in 1654 , fuppofes thefe velicls arofe from cavities, and that their ufe was to abforb; and Yrederic Hofiman hus wery explicitly laid down the doetrine of the lymphatic rcifels being a fyftem of abforbents. But antemifts in general have been of a contary opinion ; for, fona coperimer's, particuiarly
cicululy ficch as were made by injections, they have been perfaded that the lympliatic verfels did not arile fronedvities, and lid not aborb, bitwerc merely contin'lations from limall arteries. 'The doctine, therefore, that the lymphatizs, like the lactcals, were abforbents, as had been fuggefted by Glifon and by Hunman, has been revived by Dr Hunter and Dr Monro, Who have controverted the experiments of their predeceffors in anatomy, and have endeavoured to prove that the lymphatic veffels are not continued from arteries, but are abforbents.

To this doctrine, however, feveral objections have beenfarted, particularly by Halter (Elin. Phyf. 1. 24. § 2, 3.) ; and it has been found, that before the doctrite of the lymphatics being a fyftem of abforbents can be eftablithed, it muft firft be determined whether this fyftem is to be found in other animals befides man ind quadrupeds. Mr Hewfon claims the merit of having proved the affirmative of this queftion, by difcovering the lymphatic fyftem in birds, fill, and amphibious animals. See Fhil. Tranf. vol.lviii. and lxix.And latterly, Mr Cruiknkank lias traced the ramifications of that fyftem in almoft every part of the body ; and from his difections, figures have been made and lately publithed to the world. To Mr Sheldon alfo we are much indebted for his illiftration of this fyftem, which promifes to give great fatisfaction, but of which only a part has yet becn publifhed.

The gravid uterus is a fubject likewife which has recoived confiderable improvements, particularly relating to one very important difcovery; viz. that the internal membrane of the uterus, which Dr Hunter has named decidua, conftitutes the extcrior part of the fccundines or after-birth, and feparates from the reft of the uterus every time that a woman either bears a child ot fuffers a mifcarriage. This difcovery includes another, to wit, that the placenta is partly made up of an excrefcence or efflorefcence from the uterus itfelf.

Thefe difcoveries are of the utmoft confequence, both in the phyfiological queftion about the connection between the mother and child, and likewife in explaining the phenomena of births and abortions, as well as in regulating obftetrical practice.

The anatomints of this century have improved anatomy, and have made the ftudy of it much more eafy, by giving us more correct as well as more numerous figures. It is amazing to think of what las been done in that time. We have had four large folio books of figares of the boncs, viz. Chefelden's, Albinus's, Sue's and Trew's. Of the mufcles, we have had two large folios; one from Cowper, which is elegant; and one from Albinus, which, from the accuracy and labour of the work, we may fuppofe will never be outdnne. Of the blood-veffels we have a large folio from Dr Haller. We have had one upon the nerves from Dr. Meckel, and another by Dr Monro junior. We have had A1linus's, Roederer's, Jenty's, and Hunter's works upon the pregnant uterus; Weitbrecht and Leber on the joints and frefh bones; Soemerring on the brain; Zin on the eye; Cotumitas, Mekel junior, \&c. on the ear; Walterus on the nerves of the thorax and abdomen; Dr Monro on the burfæ mucofe, \&c.

It would be endlefs to mention the anatomical figures that have been publifhed inthis century, of particular and
finaller parts of the body, by Morgagni, Ruyfch, Valfalva, Sanctorini, Ififter, Vater, Cant, Zimnerman, Walterus, and others.

Thole elegant plates of the brain, however, juft publihed by M. Vicq. d'Azyr, muft not pals without notice, efpecially as they form part of an univerfal fyftem of anatomy and phyfiology, both human and comparative, propofed to be executed in the fame fplendid ftyle. Upon the brain alone 19 folio plates are employed; of which feveral are coloured. The figures are delineated with accuracy and clearnefs; but tbe colouring is rather beautiful than correct. Such parts of this work as may be publifhed, cannot fail to be equally acceptable to the anatomift and the philofopher; but the entire defign is apparently too extenfive to be accomplified within tle period of a fingle life. In Great Britain, alfo, a very great anatomical work is carrying on by Andrew Bell, F. S. A. S. engraver to his Royal Highnefs the Prince of Wales, with the approbation of Dr Monro, and under the infpection of his very ingenious affiftant Mr Fyfe. It is to compofe a complete illuftration, both general and particular, of the human body, by a felection from the beft plates of all the greateft anatomifts, as well foreign as Britifh, exhibiting the lateft difcoveries in the fcicnce, and accompanicd with copious explanations. The whole nunber of plates mentioned in the Profectus is 240 , of which 152 are already done; all in royal folio.

To the foreign treatifes already mentioned may be added thofe recently publifhed by Sabbatier and Plenck on anatomy in general. In Great-Britain, the writings of Keil, Douglas, Chefelden, the firft Monro, Winflow, \&c. are too well known to need defcription. The laft of thefe ufed to be recommended as a ftandard for the ftudents of anatomy: but it has of late given place to a more accurate and comprehenfive fyitem, in three volumes, publifhed by Mr Elliot of Edinburgh, upon a plan approved of by Dr Monro, and executed by Mr° Fyfe. Dr Simmons of London has alfo obliged the world with an excellent fyftem of ana. tomy; and another work, under the title of "Elements of Anatomy and the Animal Oeconomy: in which the fubjects are treated with uncommon elegance and perfpicuity.

In the latter part of the laft century, anatomy made two great fteps, by the invention of injections, and the method of making what we commonly call preparations. Thefe two modern arts have really been of infinite ufe to anatomy; and befides have introduced an elegance into our alminiftrations, which in former times could not have been fuppofed to be poffible. They arofe in Holland under Swammerdam and Ruyfch, and afterwards in England under Cowper, St. André, and others, where they have been greatly improved.

The allatomifts of former ages had no other knowledge of the blood-veffels, than what they were able to collect from laborions diffections, and from examining the fmaller branches of them, upon fome lucky occalion, when they were found more than commonly loaded with red blood. But filling the vafcular fyftem with a bright coloured wax, enables us to trace the large veffels with great eafe, renders the fmaller much more confpicuons, and makes thoufands of the very minute ones
ones vifible, which from their delicacy, and the tranfparency of their natural contents, are otherwife imperceptible.

The modern art of corroding the flefhy parts with a menftruum, and of leaving the moulded wax entire, is fo exceedingly ufeful, and at the fame time fo ornamental, that it does great honour to the ingenious inventor Dr Nicholls.

The wax-work art of the moderns might deferve notice in any hiftory of anatomy, if the mafters in that way had not been fo carelefs in their imitation. Many of the wax-figures are fo tawdry with a fhow of unnatural colours, and fo very incorrect in the circumftances of figure, fituation, and the like, that though they ftrike a vulgar eye with admiration, they muft appear ridiculous to an anatomift. But thofe figures which are caft in wax, plafter, or lead, from the real fubject, and which of late years have been frequently made, are, of courfe, very correct in all the principal parts, and may be confidered as no infignificant acquifition to modern anatomy. The proper, or principal ufe of this art is, to preferve a very perfect likenefs of fuch fubjects as we but feldom can meet with, or cannot well preferve in a natural ftate ; a fubject in pregnancy, for example.

The modern inproved methods of preferving animal bodies, or parts of them, has been of the greateft fervice to anatorny ; efpecially in faving the time and labour of the anatomift in the nicer diffections of the fmall parts of the body. For now, whatever he has prepared with care, he can preferve; and the object is ready to be feen at any time. And in the fame manner he can prefcrve anatomical curiofities, or rarities of every kind; fuch as, parts that are uncommonly formed ; parts that are difeafed; the parts of the pregnant uterus and its contents. Large collections of fuch curiofities, which modern anatomifts are ftriving almoft every where to procure, are of infinite fervice to the art, efpecially in the hands of teachers. They give ftudents clear ideas about many things which it is very effential to know, and yet which it is impoffible that a teacher fhould be able to fhow otherwife, were he ever fo well fupplied with frefh fubjcets.

> § 2. View of the Subject in general, and Plan of the following Treative.

The etymology of the word anatomy, as above giv ven, implies fimply diffection; but by this term fomething more is ufitally underftood.

It is every day inade ufe of to exprefs a knowledge of the human body; and a perfon who is faid to underftand anatomy, is fuppofed to be converfant with the fructure and arrangement of the different folid parts of the body.

It is commonly divided into Anatomy, properly fo called; and Comparative Anatomy: the firft of thele is confined folely to the human body; the latter includes all animals, fo tar as a knowledge of their ftructure may tend to perfect our ideas of the human body. See Comparative. Aluatomzy.

The term anatomy may alfo have another and more extenfive fignification : it may be employed to exprefs not only a knowledge of the firneture and difpofition of the parts but likewife of their øconomy and ufe. Confidered in this light, it will feldom fail to excite the chVol. I.
riofity of people of tafte, as a brancli of philofophy; fince, if it is pleafing to be acquainted with the ftrugure of the body, it is certainly more fo to difcover all the fprings which give life and motion to the machine, and to obferve the admirable mechanifn by which fo many different functions are executed.

Aftronomy and anatomy, as Dr Hunter, after Fontenelle, obferves, are the ftudies which prefent us with the moft friking view of the two greateft attributes of the Supreme Being. The firft of thefe fills the mind with the idea of his immenfity, in the largenefs, diftances, and number of the heavenly bodies; the laft, aftoniflies with his intelligence and art in the variety and delicacy of animal mechanifm.

The human body has been commonly enongh known by the name of microcofmus, or the little world; as if it did not differ fo much from the univerfal fyftem of nature in the fymmetry and number of its parts as in their fize.

Galen's excellent treatife De ufu partium, was compofed as a profe hymn to the Creator ; and abounds with as irrefiftible proofs of a fupreme Caufe and governing Providence, as we find in modern phyficotheology. And Cicero dwells more on the ftrtcture and oconomy of animals than on all the productions of nature befides, when he wants to prove the exiftence of the gods from the order and beauty of the univerfe. He there takes a furvey of the body of man in a moft elegant fynopfis of anatomy, and concludes thus : "Quibus rebus expofitis, fatis docuiffe videor, hominis natıra, quanto omnes anteiret animantes. Ex quo debet intelligi, nec figuram fitumque membrorum, nec ingenii mentifque vim talem effici potuiffe fortuna."

The fatisfaction of inind which arifes from the ftudy of anatomy, and the influence which it muft naturally have upon our minds as philofophers, cannot be better conveyed than by the following paffage from the fame atthor: "Quæ contuens animus, accepit ab his cognitioncm deorem, ex qua oritur pietas: cui conjuncta juftitia eft, reliquæque virtutes: ex quibus vita beata exfiftit, par et fimiles deorum, nulla alia re nifi immortalitate, quæ nihil ad bene vivendum pertinet, cedens cœleftibus."

It would be endlefs to quote the animated paffages of this fort which are to be found in the phyficians, philofophers, and theologifts, who have confidered the ftructure and functions of animals with a vicw towards the Creator. It is a view which muft frike one with a moft awful conviction. Who can know and confider the thoufand evident proofs of the aftonifhing art of the Creator, in forming and fuftaining an animal body fuch as ours, without feeling the moft pleafant enthufiafm? Can we ferioully retlect upon this awful fubject, without being alinoft loft in adoration? without longing for another life after this, in which we may be gratified with the higheft enjoyment, which our faculties and nature feem capable of, the feeing and comprehending the whole plan of the Creator, in forming the univerfe and in directing all its operations?

But the more immediate purpofes of anatomy concern thofe who are to be the guardians of health, as this ftudy is neceffary to lay a foundation for all the branches of medicine. The more ve know of our fabric, the more reafon we have to believe, that if our fenfes trere more acute, and our judgincnt more enlar4%
ged,
ged, we fiould be able to trace many fprings of life which are now hidden from us: by the fame fagacity we fhould difcover the true caufes and nature of difcafes; and thereby be cnabled to reftore the health of many, who are now, from our more confined knowledge, faid to labour under incurable diforders. By fuch an intimate acquaintance with the occonomy of our bodies, we fhould difcover even the feeds of difcafes, and deftroy them before they had taken root in the conftitution.

That anatomy is the very bafis of furgery every body allows. It is diffection alone that can teach us, where we may cut the living body with freedom and difpatch; and where we may venture with great circomfpection and delicacy; and where we muft not, upon any account, attempt it. This informs the head, gives dexterity to the hand, and familiarizes the heart with a tort of neceffary inlumanity, the nfe of cutting-inftruinents upon our fellow-creatures.

Befides the knowledge of our body, through all the varicty of its fructure and operations in a found fate, it is by anatomy only that we can arrive at the knowledge of the true nature of moft of the difeafes which aflick humanity. The fymptoms of many diforders are often equivocal; and dıfcafes themfelves are thence frequently miftaken, even by fenfible, experienced, and attentive phyficians. But by anatomical examination after death, we can with certainty find out the miftake, and learn to avoid it in any fimilar cafe.

This ufe of anatomy has been fo generally adopted by the moderns, that the cafes already publifked are almoft innumerable : Mangetus, Morgagni, indeed many of the beft modern writingsin phyfic, are full of them. And if we look among the phyficians of the beft character, and obferve thofe who have the art itfelf, rather than the craft of the profeffion at heart; we fhall find them confantly taking pains to procure leave to examine the bodies of their patients after death.

After having conlidered the rife and progrefs of anatomy; the various difcoveries that have been made in it, from time to time ; the great number of diligent obfervers who have applied themfelves to this art; and the importance of the ftudy, not only for the prevention and cure of difeafes, but in furnifhing the livelieft proofs of divine wifdom; the following queftions feem naturally to arife: For what purpofe is there fuch a waricty of parts in the human body? Why fuch a complication of nice and tender machinery? Why was there not rather a more fimple, lefs delicate, and lefs expenfive frame (A) ?

In order to acquire a fatisfactory general idea of this fubjeet, and find a folution of all fuch queftions, let us, in our imaginations, make a man : in other words let us fuppofe that the mind, or immaterial part, is to be placed in a corporeal fabric, in order to hold a correfpondence withother material beings by the intervention of the body; and then confider, a priori, what will be vanted for her accommodation. In this inquiry, we fhall plainly fee the neceffity or advantage, and therefore the final caufe, of moft of the parts which we ac-
tually find in the limman body. And if we confider. that, in order to anfiver fome of the requilites, luman wit and invention would be very infufficient; we need not be furprifed if we meet with fome parts of the bow dy whofe ufe we cannot yet perceive, and with fome operations and functions which we cannot explain. We can fee that the whole bears the moft friking characters of excelling wifdom and ingenuity : but the imperfect fenfes and capacity of man cannot pretend to reach every part of a machine, which nothing lefs than the intelligence and power of the Supreme Being could contrive and execute.

Firft, then, the mind, the thinking, immaterial agent, muft be provided with a place of immediate refidence, which fhall have all the requifites for the union of fpirit and body; accordingly fhe is provided with the brain, where fhe dwells as governor and fuperintendant of the whole fabric.

In the next place, as the is to hold a correfpondence with all the material beings around lier, fhe mult be fupplicd with organs fitted to receive the different kinds of impreffions which they will make. In fact, therefore, we fee that fhe is provided with the organs of fenfe, as we call them : the eyt is adapted to light; the ear to found; the nofe to finell; the mouth to tafte; and the fkin to touch.

Further: She muft be furnifhed with organs of communication between herfelf in the brain and thofe organs of fenfe, to give her information of all the impreffions that are made upon them : and fhe mult have organs between herfelf in the brain and every other part of the body, fitted to convey lier commands and influence over the whole. For thefe purpofes the nerves are actually given. They are chords, which rife from the brain, the immediate refidence of the mind, and difperfe thenfelves in branches through all parts of the body. They convey all the different kinds of fenfa tions to the mind, in the brain ; and likewife carry out from thence all her commands or influence to the other parts of the body. They are intended to be occafional monitors againft all fuch impreffions as might endanger the well-being of the whole, or of any particular part ; which vindicates the Creator of all things, in having actually fubjected us to thofe many difagreeable and painful fenfations which we are expoled to from a thoufand accidents in life.

Moreover, the mind, in this corporeal fyftem, muft be endued with the power of moving from place to place, that fhe may have intercourfe with a variety of objects; that fhe may fly from fuch as are difagreeable, dangerous or hurtful, and purfue fuch as are pleafant or ufeful to her. And accordingly fhe is furnifhed with limbs, and with mufcles and tendons, the inftruments of motion, which are found in every part of the fabric where motion is neceffary.

But to fupport, to give firmnefs and flape to the fabric; to keep the fofter parts in their proper places; to give fixed points for, and the proper direction to its motions, as well as to protect fome of the more important and tender organs from external injuries; there
(A) The following beautiful reprefentation is takcn from the late Dr Hunter's Introdusfory Lecture ins Ava:only'.
there muft be fome firm prop-work interwoven through the whole. And, in fact, for fuch purpofes the bones are given.

The prop-work muft not be made into one rigid fabric, for that would prevent motion. Therefore there are a number of bones.

Thefe pieces muft all be firmly bound together, to prevent their diflocation. And this end is perfectly well anfwered by the ligaments.

The extremitics of thefe bony pieces, where they move and rub upon one another, muft have fmooth and lippery furfaces for eafy motion. This is moft happily provided for, by the cartilages and mucus of the joints.

The interfices of all thofe parts muft be filled up with fome foft and ductile mattcr, which thall keep them in their places, unite them, and at the fame time allow them to move a little upon one another. And thefe purpofes are anfwered by the cellular membrane or adipofe fubftance.

There mult be an ontward covering over the whole apparatus, both to give it compactnefs and to defend it from a thoufand injuries : which, in fact, are the very purpofes of the fkin and other integuments.

Laftly, the mind being formed for fociety and intercourfe with beings of her own kind, fhe mult be endued with powers of expreffing and communicating her thoughts by fome fenfible marks or figns; which fhall be both eafy to herfelf, and admit of great variety ; and accordingly fhe is provided with the organs and faculty of fpeech, by which the can throw out figns with amazing facility, and vary them without end.

Thus we have built up an animal body which would feem to be pretty complete : but as it is the nature of matter to be altered and worked upon by matter ; fo in a very little time fuch a living creature muft be deftroyed, if there is no provifion for repairing the injuries which the muft commit upon herfelf, and thofe which the muft be expofed to from without. Therefore a treafure of blood is actually provided in the heart and vafcular fyftem, full of nutritious and healing particles, fluid enough to penetrate into the minuteft parts of the animal; impelled by the heart, and conveyed by the artcries, it wahes every part, builds up what was broken down, and fiveeps away the old and ufelefs materials. Hence we fee the neceffity or advantage of the heart aud arterial fyftem.

What more there was of this blood than enough to repair the prefent damages of the machine, muft not be loft, but frould be returned again to the heart ; and for this purpofe the venous fyttem is actually provided. Thefe requifites in the animal explain, a priori, the circulation of the blood.

The old materials which were become ufelefs, and are fivept off by the current of blood, muft be feparated and thrown out of the fyftem. Therefore glands, the organs of Secretion, are given for ftraining whatever is redundant, vapid, or noxious, from the mafs of blood; and when ftrained, they are thrown out by emunctories, called organs of Excretion.

But now, as the machine muft be conftantly wearing, the reparation muft be carried on without intermiffion, and the ftrainers mult always be employed. Therefore there is actually a perpetual circulation of the blood, and the fecretions are always going on.

Even all this provifion, however, would not be fufflcient ; for that ftore of blood would foon be confumed, and the fabric would break down, if there were not a provifion made for frefh fupplies. Thefe we obferve, in fact, are profufely fcattered round her in the animal and vegetable kingdoms; and fhe is furnifhed with hands, the fitteft inftruments that could have been contrived, for gathering them, and for preparing them in a variety of ways for the mouth.

But thefe fupplies, which we call food, mult be confiderably changed ; they inuft be converted into blood. Therefore fhe is provided with teeth for cutting and bruifing the food, and with a fomach for melting it down: In fhort, with all the organs fubfervient to digeftion. -The finer parts of the aliments only can bc ufeful in the conftitution : thefe muft be taken up and conveyed into the blood, and the dregs muft be thrown off. With this view the inteftinal canal is actually given. It feparates the nutritious part, which we call chyle, to be conveyed into the blood by the fyftem of abforbent veffels ; and the feces pafs downwards, to be conducted out of the body.

Now we have got our animal not only furnifhed with what is wanted for its immediate exiftence, but alfo with the powers of protracting that exiftence to an indefinite length of time. But its duration, we may prefume, muft neceflarily be limited: for as it is nourinted, grows, and is raifed up to its full frength and utmoft perfection; fo it muft, in time, in common with all material beings, begin to decay, and then hurry on to final ruin. Hence we fee the neceflity of a fcheme for renovation. Accordingly wife Providence, to perpetuate, as weil as preferve his work, befides giving a Atrong appetite for life and felf-prefervation, has made animals male and female, and given them fuch organs and paffions as will fecure the propagation of the fpecies to the end of time.

Thus we fee, that by the very imperfect furvey which human reafon is able to take of this fubject, the animal man muft neceflarily be complex in his corporeal fyftem, and in its operations.

He muft have one great and general fytem, the vafcular, branching through the whole for circulation : Another, the nervous, with its appendages the organs of fenfe, for every kind of feeling: And a third, for the unrion and connection of all thofe parts.

Befides thefe primary and general fyttems, he requires others which may be more locil or confined: One for ftrength, fupport, and protection ; the bony compages : Another for the requifite motions of the parts among themfelves, as well as for moving from place to place ; the mufcular part of the body : Another to prepare nourifhment for the daily recruit of the body ; the digeftive organs: And one for propagating the fpecies; the organs of generation.

And in taking this general furvey of what would appear, a priori, to be neceffary for aclapting an animal to the fituations of life, we obferve, with great fatisfaction, that man is accordingly made of fuch fyftems, and for fuch purpofes. He has them all; and he has nothing more, except the organs of refpiration. Breathing it feemed difficult to account for a pr:ori: we only knew it to be in fact effentiaily neaffary to life. Notwithftanding this, when we faw all the other parts of the body, and their functions, fo well ac4Q2 comed
counted for, and fo wifely adapted to their feveral purpofes, there could be no doubt that refpiration was fo likewife: And accordingly, the difcoveries of Dr Prieftey have lately thrown light npon this function alfo, as will be fhown in its proper place.

Of all the different fyftems in the human body, the ufe and neceffity are not more apparent, than the wifdom and contrivance which has been exerted in putting them all into the moft compact and convenient form : in difpofing them fo, that they fhall mutually receive, and give helps to one another; and that all, or many of the parts, fhall not only anfwer their principal end or purpofe, but operate fuccefsfully and ufcfully in a variety of fecondary ways.

If we confider the whole animal machine in this light, and compare it with any machine in which human art has exerted its utmoft; fuppofe the beft conftructed fhip that ever was built, we fhall be convinced beyond the poffibility of doubt, that there are intelligence and power far furpaffing what humanity can boaft of.

One fuperiority in the natural machine is peculiarly ffriking.-In machines of human contrivance or art, there is no internal power, no principle in the machine itfelf, by which it can alter and accominodate itfelf to any injury which it may fuffer, or make up any injury which admits of repair. But in the natural machne, the animal body, this is mof wonderfully provided for, by internal powers in the machine itfelf; many of which are not more certain and obvious in their effects, than they are above all human comprehenfion as to the manner and means of their operation. Thus, a wound heals up of itfelf; a broken bone is made firm again by a callus; a dead part is feparated and thrown off; noxious juices are driven out by fome of the emunctories; a redundancy is removed by fome fpontancous bleeding; a bleeding naturally ftops of itfelf; and a great lofs of blood, from any caufe, is in fome meafure compenfated, by a contracting power in the vafcular fyftem, which acconmodates the capacity of the veffels to the quantity contained. The fomach gives information when the fupplies have been expended ; reprefents, with great exactnefs, the quantity and the quality of what is wanted in the prefent ftate of the machine ; and in proportion as fhe meets with neglect, rifes in her dernand, nrges lier petition in a louder tone, and with more forcible arguments. For its protection, an animal body refifts heat and cold in a very wonderful manner, and preferves an equal temperature in a burning and in a freezing atmofphere.

A farther excellence or fitperiority in the natural machine, if poffible, ftill more aftonifhing, more beyond all human comprehenfion, than what we have been $f_{\text {peaking of }}$ of is the following. Befides thofe internal powers of felf-prefervation in each individual, when two of them cc-operate, or aft in concert, they are endued with powers of making other animals or machines like then lelves, which again are poffeffed of the fame powers of producing others, and fo of multiplying the feecies withont end.

Thefe are powers which mock all human invention or initation. They are claracteriftics of the divine Arcisect.
Having premifed this general accome of the fubject,
we fhall next confider the method to be obferved in treating it.

The ftudy of tlic haman body, as already noticed, is commonly divided into two parts. The firt, which is called Anatomy, relates to the matter and fructure of its parts; the fecond, called Phyfiology and Animal acono$m y$, relates to the principles and laws of its internal operations and functions.

As the body is a compound of folids and fluids, Anatomy is divided into,
I. The Anatomy of the folids, and
2. The Anatomy of the fluids.
I. The Solids, by which we mean all parts of our body, which are not fluid, are generally divided into two claffes, viz.
I. The hard folids or bones. This part of anatomy is called Ofteology; which fignifies the dootrine of the bones.
2. The fofter folids; which part is called Sarcology, viz. the doctrine of flef.

This divifion of the folids, we may obferve, has probably taken its origin from the vulgar obfervation, that the body is made of bone and flefl. And as there are many different kinds of what are called foft or flefly parts, Sarcology is fubdivided into,
(1.) Angeiology, or the doctrine of veffels ; by which is cominonly underftood blood-vef F_{l} :
(2.) Adenology, of glands:
(3.) Neurology, of nerves:
(4.) Myology, of mufcles : and,
(5.) Splanchnology, of the vifcera or bowels. There is, befides, that part which treats of the organs of fenfe and of the integuments.

This divifion of the folids has been here mentioned, rather for the fake of explaining fo many words, which are conftantly ufed by anatomifts, than for its importance or accuracy. For befides many other objections that might be urged, there are in the body three fpecies of folids, viz. griftle or cartilage, hair, and nails; which are of an intermediate nature between bone and flefh; and therefore cannot fo properly be brought into the ofteology or the farcology. The cartilages were claffed with the bones; becaufe the greateft number of them are appendages to bones: and for the like reafon the hair and the nails were claffed with the integuments.
II. The fluids of the human body may be divided into three kinds, which Dr Hunter calls the crude, the general or perfect, and the local or fecreted fluid.

1. By the crude fluid is meant the chyle, and whatever is abforbed at the furfaces of the body; in other words, what is recently taken into the body, and is not yet mixed with or converted into blood.
2. The general or perfect fluid is the blood itfelf; to wit, what is contained in the heart, arteries, and veins, and is going on in the round of the circulation.
3. The local or fecreted, are thofe fluids peculiar to particular parts of the body, which are ftrained off from the blood, and yet are very different in their properties from the blood. They are com:nonly called fecretions; and fome are ufeful, others excrementitions.

In treating of the Fhy fology, it is very difficult to fay what plan fhould be followed; for every nucthod which has been yet propofed, is attended with manifeft in-
conveniens.
convenience. The powers and operations of the machine have fuch a dependence upon one another, fuch connections and reciprocal influence, that they cannot well be underftood or explained feparately. In this fenfe our body may be compared to a circular chain of powers, in which nothing is firft or laft, nothing folitary or independent; fo that wherever we begin, we find that there is fomething preceding which we ought to have known. If we begin with the brain and the nerves, for example, we fhall find that thefe cannot
exift, even in idea, without the heart : if we fet out with the licart and vafcular fyftem, we fhall prefently be fenfible, that the brain and nerves muft be fuppofed: or, fhould we take up the mouth, and follow the courfe of the aliment, we fhould fee that the very firft organ which prefents itfelf, fuppofed the exiftence of both the heart and brain: Wherefore we flall incorporate the Phyfiology with the Anatomy, by attempting to explain the functions after we have demonftrated the organs.

Parti. OSTEOLOGY.

WE begin with the bones, which may be confidered as the great fupport of the body, tending to give it fhape and firmnefs.- But before we enter into the detail of each particular bone, it will be neceffary to deferibe their compofition and connections, and to explain the nature of the different parts which have an immediate relation to them ; as the cartilages, ligaments, periofteum, marrow, and fynovial glands.

Sect. I. Of the Bones in general, with their Appendages, \&c. pofition of of a white colour, and perfectly infenfible. They are the bones. the mort compack and folid parts of the body, and ferve for the attachment and fupport of all the other parts.
Three different fubftances are ufually diftinguifhed in them; their exterior or bony part, properly fo called; their fpongy cells; and their reticular fubfance. The firft of thefe is formed of many laminæ or plates, compofing a firm hard fubftance - The fpongy or cellular part is fo called on account of its refemblance to a fponge, from the little cells which compofe it. This fubftarice forms almoft the whole of the extremities of cylindrical bones. The reticular part is compofed of fibres, which crofs each other in different directions. This net-work forms the internal furface of thofe bones which have cavities.
The flat bones, as thofe of the head, are compofed only of the laminæ and the cellular fubfance. This laft is ufually found in the middle of the bone dividing it into two plates, and is there called diplöe.

Gagliardi, who pretended to have difcovered an infinite number of claviculi (c), or bony proceffes, which he defcribes as traverfing the laminx to unite them together, lias endeavoired to fupport this pretended difcovery by the analogy of bones to the bark of trees, in which certain woody nails have been remarked; but this opinion feems ta be altogether fanciful.

Some writers have fuppofed, that the bones are formed by layers of the periofteum, which gradually offify, in the fame manner as the timber is formed in trees by the hardening of the white fubftance that is found between the inner bark and the wood. M1. Du-
hamel, who has adopted this opinion, fed different animals with madder and their ordinary food alternately during a certain time; and he afferts, that in diffecting their bones, he confantly obferved diftinet layers of red and white, which correfponded with the length of time they had lived on madder or their ufual aliment. But it has fince been proved by Detleff, that M. Duhamel's experiments were inaccurate, and that neither the periofteum nor the cartilages are tinged by the ufe of madder, which is known to affect the bones only.

We ufually confider in a bone, its body and its extremities. The ancients gave the name of diaphyfis to the body or middle part, and divided the extremities into apophyfis and epiphyfis. An apopliy fis, or procefs, as it is more commonly called, is an eminence continued from the body of the bone, whereas an epiphyfis is at firft a fort of appendage to the bone, by means of an intermediate cartilage. Many epiphyfes, which appear as diftinet bones in the foetus, afterwards become apophyfes; for they are at length fo completely united to the body of the bone as not to be diftinguiflable from it in the adult fate. It is not unufual, however, at the age of 18 and even 20 years, to find the extremities of bones ftill in the ftate of epiphyfis.

The names given to the proceffes of bones are exprefive of their hhape, fize, or ufe; thus if a procefs is large and of a fpherical form, it is called caput, or head; if the head is flatted, it is termed condyle. Some proceffes, froin their refemblance to a filetto, a breaft, or the beak of a crow, are called fiyloid, maf. toid, or coracoid: others are ftyled ridges or fpines. The two procefles of the os femoris derive their name of trochanters from their ufe.

A bone has its cavities as well as proceffes. Thefe cavities cither extend quite through its fubftance, or appear only as depreffions. The former are called $f 0$ ramina or boles, and thefe foramina are fometines termed canals or conduits, according to their form and extent. Of the depreffions, fome are ufeful in articulation. Thefe are called cotyloid when they are deep, as is the cafe with the os innominatum, where it receives the liead of the os femoris; or glenoid when they are fuperficial, as in the fcapula, where it receives the os humeri. Of the depreffions that are not defigned

[^0]
.4

$\underbrace{\text { 1) intology. }}$

for articulation, thofe which leave fmall apertures are called fimfes; others that are large, and not equally furrounded by high brims, are ftyled folfa; fuch as are long and narrow, furrows; or if broad and fuperficial without brims, finuofities. Some are called digital inspreffions, from their refemblance to the traces of a fin-

We thall abridge this article, which is exceedingly diffufe in the generality of anatomical books, and will cndeavour to defcribe it with all the clearnefs it will allow.

The bones compofing the 1 keleton are fo conftructed, that the end of every bone is perfectly adapted to the extremity of that with which it is connested, and this conneftion forms what is called their articulation.

Articulation is divided into diarthrofis, fynarthrofis, and amphiarthrofis, or moveable, immovable, and mixed articulation. Each of the two firft has its fubdivifions. Thus the Diarthrofis, or moveable articulation, includes, r. The enarthrofis, as it is called, when a large head is admitted into a deep cavity, as in the articulation of the os femoris with the os innominatum. 2. Arthrodia, when a round head is articulated with a fuperficial cavity, as is the cafe of the os humeri and fcapula. 3. Ginglimus, or hinge-like articulation, as in the connection of the thigh-bone with the tibia. The enarthrofis and arthrodia allow of motion to all fides; the ginglimus only of flexion and extenfion.

The fynarthrofis, or immoveable articulation, includes, \mathbf{r}. The future, when the two bones are indented into each other, as is the cafe with the parietal bones. 2. Gomphofis, when one bone is fixed into another, in the manner the teeth are placed in their fockets.

The term amphiarthrofis is applied to thofe articulations which partake both of the fynarthrofis and diarthrofis, as is the cafe with the bones of the vertebræ, which are capable of motion in a certain degree, although they are firmly connefted together by intermediate cartilages.

What is called fymphyfis is the union of two bones into one; as in the lower jav, for inftance, which in the foctus confifts of two diftinct bones, but becomes one in a more advanced age, by the offification of the uniting cartilage.

When bones are thus joined by the means of cartilages, the nnion is ftyled fynchondrofis; when by ligaments, fyneurofis.
Of the Car- Cartilages are white, folid, fmooth, and elaitic fubtilages. ftances, between the hardnefs of bones and ligaments, and feemingly of a fibrous texture. We are not able to trace any veffels into their fubftance by injection, nor are they ever found tinged in animals that have been fed with madder.

They may be diftinguifhed into, ift, Thofe which are connected with the bones; and, 2 dly, Thofe which belong to other parts of the body. The firft ferve either to cover the ends and cavities of bones intended for motion, as in the articulations, where by their fnoothnefs they facilitate motions, which the bones alone could not exectite with fo much frccdom; or they ferve to unite bones together, as in the fymphyfis pubis, or to lengthen them, as in the ribs.

Many of them offifying as we advance in life, their number is lefs in the adult than in the foetus, and of
course there are fewer bones in the old than in the Ofteology. young fubject.

Of the fecond clafs of cartilages, or thofe belonging to the foft parts, we have initances in the larynx, where we find them ufeful in the formation of the voice, and for the attachment of mufcles.

The periofterm is a fine membrane of a compaet cel- of the $\mathbf{P e}$ lular texture, reflected from one joint to another, and riofteum. ferving as a common covering to the bones. It lias fanguiferous and lymphatic veffels, and is fupplied with nerves from the neighbouring parts. It adheres very firmly to their furface, and by its fmoothnefs facilitates the notion of mufcles. It likewife fupports the veffels that go to be diftributed through the fubftance of the bones, and may ferve to ftrengthen the articula. tions. At the extremities of bones, where it is found covering a cartilage, it has by fome been improperly confidered as a diftinct membrane, and named perichondrium. This, in its ufe and ftructure, refembles the periofteum. Where it covers the bones of the Akull, it has gotten the name of pericranium.

The periofteum is not a production of the dura mater, as the ancients, and after them Havers, imagined; nor are the bones formed by the offification of this membrane, at leaft when it is in a found flate, as fome late writers have fuppofed.

The periofteum is deficient in the teeth above the fockets, and in thofe parts of bones to which ligaments or tendons are attached.

The marrow is a fat oily fubstance, filling the cavi- of the ties of bones. In the great cavities of long bones it Marrow. is of a much firmer confiftence than in the cells of their fpongy part. In the former it inclines fomewhat to a yellowith tinge, and is of the confiftence of fat: in the latter it is more fluid, and of a red colour. This difference in colour and confiftence is orving to accidental caufes; both kinds are of the fame nature, and may both be defcribed under the common name of marrow, though fome writers give the name only to the fat-like fubftance, and call the other the medullary juice.

The marrow is contained in a very fine and tranfpa. rent membrane, which is fupplied with a great number of blood veffels, chiefly from the periofteum. This menbrana medullaris adheres to the inner furface of the bones, and furnifhes an infinite number of minute bags or veficles for inclofing the marrow, which is likewife fupported in the cavities of the bonts by the long filaments of their reticular fubftance.

Befides the veffels from the periofteum, the membrana medullaris is furnifhed with others, which in the long bones may be feen pafling in near the extiemities of the bone, and fending off numerons branches that ramify through all the veficles of this membrane.

The bones, and the cells containing the marrow, are likewife furnifned with lymphatics. By their means, the narrow, like the fat, may be taken up in a greater quantity than it is fecreted ; and hence it is that fo little are found in the bones of thofe who die of lingering difeafes.

It is fill a matter of controverfy, Whether the marrow is fenfible or not? We are certainly not able to trace any nerves to it; and from this circumftance, and its analogy to fat, Haller has ventured to confider it as infenfible. On the other hand, Diverncy afferts,

Part I.

ofteology. that an injury done to this fubttance in a living animal was attended with great pain. In this difpute phyfiologifts do not feem to have fufficiently difcriminated between the marrow itfelf and the membranous cells in which it is contained. The former, like the fat, being nothing more than a fecreted, and of courfe an inorganized, matter, may with propriety be ranked among the infenfible parts, as much as infpifated mucus or any other fecreted matter in the body; whereas the membrana medullaris being vafcular, though it poffeffes but an obfcure degree of feeling in a found fate, is not perfectly infenfible.

The marrow was formerly fuppofed to be intended for the nourifhment and rencwal of the bones; but this doctrine is now pretty generally and defervedly exploded. It feems probable that the marrow is to the bones what fat is to the foft parts. They both ferve for fome important purpofes in the animal ceconomy; but their particular ufe has never yet beell clearly afcertained. The marrow, from the tranfudation of the oil through the bones of a fkcleton, is fuppofed to dininifh their brittlenefs; and Havers, who has written profefledly on the bones, defcribes the canals by which the marrow is conveyed through every part of their fubftance, and divides them into longitudinal and tranfverfe ones. He fpcaks of the firft as extending through the whole length of the bone; and of the latter, as the paffages by which the lowgitudinal ones communicate with each other. The fimilarity of thefe to the large cancelli in burnt bones, and the tranfudation of the oil through the bones of the fkeleton, feems to prove that fome fuch paffages do actually exift.

The fynovial glands are fmail bodies (D), fuppofed to be of a glandular ftructurc, and exccedingly vafcular, fecreting a fluid of a clear mucilaginous nature, which ferves to lubricate the joints. They are placed in finall cavities in the articulations, fo as to be capable of being gently compreffed by the motion of the joint, which expreffes their juice in proportion to the degree of friction. When the fynovia is wanting, or is of too thick a confiftence, the joint becomes fiff and incapable of flexion or extenfion. This is what is termed anchylofis.

Ligaments are white, gliftcning, inclaftic bands, of a compact fubfance, more or lefis broad or thick, and ferving to connect the bones together. They are diftinguiihed by different names adapted to their different forms and ufes. Thofe of the joints are called either round or burfal. The round ligaments are white, tendinous, and inelaftic. They are ftrong and flexible, and are fornd only in the joint of the knee, and in the articulation of the os fennoris with the os innominatum. The burfal, or capfular ligaments, furround the whole joint like a purfe, and are to be found in the articulations which allow motion every way, as in the articulation of the arm with the fcapula.

Of thole facs called Burfe mucofo, a few were known to former anatomifts, bat by much the greater number have been fince difcovered by Dr Monro (E), who obferves, that they are to be met with in the ex-
tremities of the body only; that many of them are $\underbrace{\text { Ofeology }}$ placed entirely on the inner fides of the tendons, between thefe and the bones. Many others cover not only the inner, but the outer fides of the tendons, or are interpofed between the tendons and external parts, as well as between thofe and the boncs.

Some are fituated between the tendons and externál parts only or chiefly, forme between contiguous tendons, or between the tendons or the liganents and the joints. A few fuch facs are obferved where the proceffes of bones play upon the ligaments, or where one bone plays upon another. Where two or more tendons are contiguous, and afterwards feparate from each other, we generally find a common burfa divided into branches, with which it communicates; and a few burfe of contignous tendons communicate with each other.Some, in healthy children, communicate with the cavities of the joints; and in many old pcople he has fcen fuch communications formed by ufe or worn by friction, independent of difeafe.

Their proper membrane is thin and tranfparent, but very denfe, and capable of confining air or any other fluid. It is joined to the neighbouring parts by the common cellular fubftance. Between the burfa and the hard fubttance of bone, a thin layer of cartilage or of tough membrane is very generally interpofed. To the cellular fubftance on the outlide of the burfa, the adipofe fubfance is connectcd; except where the burfa covers a tendon, cartilage, or bone, much expofed to preffire or friction.

In feveral places a mafs of fat, covercd with the continuation of the membrane of the burfa, projects into its cavity. The edges of this arc divided into fringes.

The imer fide of the membrane is fmooth, and is extremely fippery from the liquor fecreted in it.

The ftructure of the burfe bears a ftrong refemblance Theirftr to the capfular ligaments of the joints. 1. The inner ture cor layer of the ligament, like that of the burfe, is thin pared w and denfe. 2. It is connceted to the external ligaments by the common cellular fubftance. 3. Between it and the bones, layers of cartilage, or the articular cartilages, are intcrpofed. 4. At the fides of the joints, where it is not fubjected to violent preffure and friction, the adipofe fubftance is conncted with the cellularmembrane. 5. Within the cavities of the joints we obferve maffes of fat projecting, covered with fimilar blood-veffels, and with fimilar fimbriæ hanging from their edges. 6. In the knee the upper part of fuch a mafs of fat forms what has beencalled the mucilaginous gland of the joint, and the under part projects into the burfa behind the ligament which ties the patelia to the tibia. 7. The liquor which lubricates the burfæ has the fame colour, confittence, and properties as that of the joints, and both are affected in the fame manner by lieat, mineral acids, and ardent fpirits. 8. In fome places the burfe conftantly communicate with the cavities of the joints, in others they generally do fo; from which we may infer a famenefs of ftructure.

When we examine the fimbrixe common to the fatty bodics of the joints and burfx, and which have been fuppofed to be the duets of glands lodged within the
maffes
(D) it is now much doubted, however, whether the appearances in the joints, which are ufually called glands, are ainy thing more than affemblages of far.
(E) See Defcription of the Burfe Mucofe, \&cc.

Jteology. maffes of fat, we are not able to difcover any glandular appearance within them. And although we obferve many veffels difperfed upon the membranes of the fatty bodies and fimbrix; and that we cannot doubt that thefe fimbrix confift of ducts which contain a lubricating liquor, and can even prefs fuch a liquor from them ; yet their cavities and orifices are fo minute, that they are not difcoverable even by the affiftance of magnifying-glaffes. Thefe fimbrix appear, therefore, to be ducts like thofe of the urethra, which prepare a mucilaginous liquor without the affiftance of any knotty or glandular organ.

Upon the whole, the fynovia feems to be furnifhed by invifible exhalent arteries by the ducts of the fimbrix, and by oil exuding from the adipofe follicles by paffages not yet difcovered.

The word Jkeleton, which by its etymology inplies f the Slee- fimply a dry preparation, is ufually applied to an afton. femblage of all the bones of an animal united together in their natural order. It is faid to be a natural 1keleton, when the bones are connected together by their own proper ligaments; and an artificial one, when they are joined by any other fubftance, as wire, \&c.

The fkeleton is generally divided into the head, trunk, and extrenities. The firf divifion includes the bones of the cranium and face. The bones of the trunk are the finine, rils, fternum, and bones of the pelvis.

The upper extremity on each fide confifts of the two bones of the fhoulder, viz. the fcapula and clavicle; the bone of the arm, or os humeri; the bones of the fore-arm, and thofe of the hand.

The lower extremity on each fide of the trunk confilts of the thigh-bone and the bones of the leg and foot.

Sect. II. Of the Bones of the Head.

The head is of a roundifl figare, and fomewhat oval (F). Its greateft diameter is from the forehead to the occipur ; its upper part is called vertex, or crown of the head; its anterior or fore-part the face ; and the upper part of this finciput, or forehead; its fides the temples; its poferior, or hind-part, the occiput; and its inferior part the bafis.

The bones of the head may be divided into thofe of the cranium and face.

> § 1. Bones of the Cranium and Face.

There are eight bones of the cranium, viz. the coronal bone, or os frontis ; the two parietal bones, or offa bregmatis; the os occipitis; the two temporal bones ; the fphenoid bone; and the os ethmoides, or cribriforme.
of there, only the os occipitis and offa bregmatis are confidered as proper to the cranium; the reft being common both to the cranium and face.

Thefe bones are all harder at their furface than in their middle; and on this account they are divided into two tables, and a middle fongy fubftance called diplöe.
In this, as in all the other bones, we flall confider of the O_{8} its figure, ftructure, proceffes, depreffions, and cavi- Frontis. ties; and the manner in which it is articulated with the other bones.
The os frontis has fome refemblance in flape to the fhell of the cockle. Externally it is convex, its concave fide being turned towards the brain. This bone, in the places where it is united to the temporal bones, is very thin, and has there no diplöe. It is likervife exccedingly thin in that part of the orbit of the eye which is nearef to the nofe. Hence it is, that a wound in the eye, by a fword or any other pointed inftrument, is fometimes productive of immediate death. In thefe cafes, the fword paffing through the weak part of the bone, penetrates the brain, and divides the nerves at their origin ; or perhaps opens fome bloodveffel, the confequences of which are foon fatal.

We obferve on the exterior furface of this bone five apophyfes or proceffes, which are eafily to be diftinguiihed. One of thefe is placed at the bottom and narroweft part of the bone, and is called the nafal procers, from its fupporting the upper end of the bones of the nofe. The four others are called angular or orbitar proceffes. They affift to form the orbits, which are the cavities on which the eyes are placed. In each of thefe orbits there are two proceffes, one at the interior or great angle, and the other at the exterior or little angle of the orbit. They are called the angular proceffes. Between thefe a ridige is extended in form of an arch, and on this the eye-brows are placed. It is called the orbitar or fuperciliary ridge, and in fome meafure covers and defends the globe of the eye. There is a hole in this for the paflage of the frontal veffels and nerves. This arch is interrupted near the nofe by a fmall pit, in which the tendon of the mufculus obliquus major of the eye is fixed. From the under part of each fuperciliary ridge a thin plate runs a confiderable way backwards, and has the name of orbitar; the external and fore-part of this plate forms a funuofity for lodging the lacrymal gland. Between the orbitar plates there is a large difcontinuation of the bone, which is filled up by the cribriform part of the os ethmoides.

On examining the inner furface of this bone at its under and middle part, we obferve an elevation in form of a ridge, which has becn called the \int pinous proce \sqrt{s}; it afcends for fome way, dividing the bone into two confiderable foffx, in which the anterior lobes of the brain are placed. To a narrow furrow in this ridge is attached the extremity of the falx, as the membrane is called, which divides the brain into two hemifpheres. The furrow becoming gradually wider, is continued to the upper and back part of the bone. It has the falx
fixed
$\mathrm{N}^{\circ} \mathrm{I} 7$.
(F) The bones of the foetus being perfectly diftinct, and the mufcles in young perfons not acting much, the fhape of the head has been fuppofed to depend much on the management of children when very young. Vefalius, who has remarked the difference in people of different nations, obfcrves, for inftance, that the liead of a Turk is conical, from the early ufe of the turban; whilft that of an Englifhman is flattencd by the chin-ftay. Some of the lateft phyfologifts fiuppofe, with good reafon, that this difference is chiefly owing to certain natural caufes with which we are as yet unacquainted.
$\underbrace{0,2 \text { cology. fixed to it, and part of the longitulinal finus lodged in }}$ it. Belides the two foffe, there are many deprefions, which appear like digital impreffions, and owe the ir formation to the prominent circumvolutions of the brain.

In the foctus, the forehead is compofed of two diftinet bones; fo that in them the fagittal future reaches from the os occipitis to the nofe. This bone is almoft every where compofed of two tables and a diplöe. Thefe two tables feparating from each othcr under the eyes, form two cavities, one on each fide of the face, called the frontal finufes. Thefe finufes are lined with a foft membrane, called membrana pituitaria. In thefe finufes a mucus is fecreted, which is conftantly pafling through tivo fmall holes into the noftrils, which it ferves to moiften.

The os frontis is joined by future to many of the boncs of the head, viz. to the parietal, maxillary, and temporal hones; to the os ethmoides; os fplienoides; os unguis; and offa nafi. The future which connects it with the parietal bones is called the coronal future.
13
Of the pa- ry parietal bones are tivoin number; they are verietalbones ry thin, and even tranfparent in fome places. The particular figure of each of thefe bones is that of an irregular fquare, bordered with indentations through its whole circumference, except at its lower part. It will be eafily conceived, that thefe bones which compofe the fuperior and lateral parts of the cranium, and cover the greateft part of the brain, form a kind of vault. On their inner furface we obferve the marks of the veffels of the dura mater; and at their upper edge the groove for the fuperior longitudinal finus.

The offa parietalia are joined to cach other by the fagittal future ; to the os fiphenoides and offa temporum by the fquamous future ; to the os occipitis by the lambdoidal future (G), fo called from its refemblance to the Greek letter lambda; and to the os frontis by the coronal future.

In the fœetus, the parietal bones are feparated from the middle of the divided os frontis by a portion of the cranium then unoffified.
14
of the oc- parts of the faull. it aproche pererly and cipitalbone a lozenge, and is indented throughout three parts of its circumference.

There is a confiderable hole in the inferior portion of this bone, called the foramen magnum, through which the medulla oblongata paffes into the fine.The nervi accefforii, and vertebral arteries, likewife pafs through it. Behind the condyles are two holes for the paffage of cervical veins into the lateral finufes; and above them are two others for the paffage of the eighth pair and acceffory nerves out of the head. At the fides, and a little on the anterior part of the foramen magnum, are two proceffes, called the condyles, one on each fide; they are of ant oval figure, and are covered with cartilage.

The external furface of this bone has a large tranfverfe arched ridge, under which the bone is very irregular, where it affords attachment to feveral mufcles. On exannining its inner furface, we may obferve two ridges in form of a crofs; one afcending from ncar the foramen magnum to the top of the bone; the upper
end of this in which the falx is 'fixcd, is hollow, for Ofteology. lodging the fuperior longitudinal finus, and the under end lias the third procefs of the dura mater fixed to it. The other ridge, which runs horizontally, is likewife hollow for containing the lateral finufes. Four foffe are formed by the crofs, two above and two below. In the former are placed the pofterior lobes of the brain, and in the latter the lobes of the cerebellum.

At the bafis of the cranium, we obferve the cuneiform procefs (which is the name given to the grcat apophyfis at the fore part of this bone) ; it ferves for the reception of the medulla oblongata.

The os occipitis is of greater ftrength and thicknefs. than cither of the other bones of the head, though irregularly fo; at its inferior part, where it is thinneft, it is covered by a great number of mufcles.

This bone, from its fituation, being more liable to be injured by falls, than any other bone of the head, nature has wifely given it the greateft frength at its upper part, where it is moft expofed to danger.

It is joined to the parietal bones by the lambdoidal future, and to the offa temporum, by the additamentum of the temporal future. It is likewife connected to the os \int phenoides by the cuneiform procefs. It is by means of the os occipitis that the hcad is united to the trunk, the two condyles of this bone being connected to the fuperior oblique procefles of the firft vertebra of the neck.

There are two temporal bones, one on each fide.We may diftinguifh in them two parts; one of which of the temis called the fquamous or fcaly part, and the other pars poral bones petrofa from its hardnefs. This laft is flaped like a pyramid.

Each of thefe divifions affords proceffcs and cavities: externally there are three proceffes ; one anterior, called the zygomatic procefs; one pofterior, called the mafloid or mamillary procefs, from its refemblance to a nipple; and one inferior, called the flyloidproce/s, becaufe it is flaped like a filetto, or dagger.

The cavities are, I. The meatus auditorius externus. 2. A large foffa which ferves for the articulation of the lower jaw ; it is before the meatus anditorius, and immediately under the zygomatic procefs. 3. The fylo-maftoid hole, fo called from its fituation between the ityloid and maftoid pracefles; it is likewife ftyled the aquæduct of Fallopins, and affords a paffage to the portio dura of the auditory, or feventh pair of nerves. 4. Below, and on the fore-part of the laft forament, we obferve part of the jugular foffa, in which the beginning of the internal jugular vein is lodged. Anterior and fuperior to this foffa is the orifice of a foramen, through which paffes the carotid artery. This foramen runs firft upwards and then forwards, forming a kind of elbow, and terminates at the end of the os petro-fum.-At this part of each temporal bone, we may obferve the opening of the Euftachian tube, a canal which paffcs from the ear to the back part of the nofe.

In examining the internal furface of thefe bones, we may remark the triangular figure of thcir petrous part which feparatcs two foffr; one fuperior and auterior: the other inferior and pofterior: the lat:er of thefe compofes part of the foffa, in which the cerebellum is 4R placed ;

[^1] the balis of the brain. On the pofterior dide of the pars petrofa, we obferve the meatus auditorus internus, into which enters the double nerve of the feventh pair. On the under fide of this procefs, part of a hole appears, which is common to the temporal and occipital bones; through it the lateral finus, the eighth pair, 21id acceffory nerves, pais out of the head.

The pars petrofa contains feveral little bones called the bones of the ear; which, as they do not enter into the formation of the cranium, fhall be defcribed when we are treating of the organs of hearing.

The off temporum are joined to the offa malarum, by the zygomatic futures; to the parictal bones, by the fquamous futures; to the os occipitis, by the lambdoidal future; and to the fphenoid bone, by the future of that name.

From the great number of holes with which it is pierced, Ofeology. it is fometimes called of cribriforme or fieve-like bone. It confints of a middle part and two lides. The midale part is for of dle part is formed of a the blhmoides an infinite number of holes that afford a paffage to fila- or cribriments of the olfactory nerve. From the middle of this forme.
plate, both on the outfide and from within, there rifes up a procefs, which may be eafily diftinguifhed. The inner one is called crifla galli, from its fuppofed refemblance to a cock's comb. To this procefs the falx of the dura mater is attached. The exterior procefs, which has the fame common bafis as the crifta galli, is a finc lamella which is united to the vomer; and divides the cavity of the noftrils, though unequally, it being generally a little inclined to one fide.

The lateral parts of this bone are compofed of a cellular fubfance; and thefe cells are fo very intricate, that their figure or number cannot be defcribed. Many writers have on this account called this part of the bone the labyranth. Thefe cells are externally covered with a very thin bony lamella. This part of the bone is called the os planum, and forms part of the orbit.

The different cells of this bone, which are numerous, and which are cvery where lined with the piruitary membrane, evidently ferve to enlarge the cavity of the nofe, in which the organ of fmelling refides.

This bone is joined to the os fphenoides, os frontis, offa maxillaria, offa palati, offa nafi, offa unguis, and vomer.

The ancients, who confidered the brain as the feat of all the liumetrs, imagined that this vifcus difcharged its redundant moifture through the holes of the ethmoid bone. And the vulgar ftill think, that abfceffes of the brain difcharge themfelves through the mouth and ears, and that fnuff is liable to get into the head; but neither fnuff nor the matter of an abfeefs are more capable of pafling througlathe cribriform bone, than the ferofity which they fuppofed was difcharged through it in a common cold.-All the holes of the ethmoid bone are filled up with the branches of the olfactory nerve. Its inner part is likewife covered with the dura mater, and its cells are every where lined with the pituitary membrane; fo that neither matter nor any other fluid can polfibly pafs through this bone either externally or internally. Matter is indeed fornetimes difcharged through the noftrils; but the feat of the difeafe is in the finufes of the nofe, and not in the brain; and impofthumations are obferved to take place in the ear, which fuppurate and difcharge themfelves externally.

Before we leave the bones of the head, we wifh to make fome general obfervations on its fructure and figure. - As the cranium might have been compofed of a fingle bone, the articulation of its feveral bones being abfolutely without motion, it may be afked perhaps, Why fuch a multiplicity of bones, and fo great number of futures? Many advantages may poffibly arife from this plurality of bones and futures, which may not yet have been obicrved. We are able, however, to point out many ufeful ends, which could only be accomplifted by this peculiarity of fructure.-In this, as in all the otber works of nature, the great wifdom of the Creator is cvinced, and cannot fail to cxcite our admiration and gratitude.

The cranium, by being divided into feveral bones, grows much fafter and with greaier facility, than if it

Oiteology. was compofed of one piece only. In the foetus, the bones, as we have before obferved, are perfectly diftinet from each other. The offification begins in the middle of each bone, and proceeds gradually to the circumference. Hence the offification, and of courfe the incrafe of the head, is carried on from an infinite number of points at the fame time, and the bones confequently approach each other in the fame proportion. To illustrate this doctrine more clearly, if it can want further illuftration, fuppofe it neceffary for the parictal bones which compofe the upper part of the head, to exterd their offification, and form the fore part of the head likewife.-Is it not evident, that this procefs would be much more tedious than it is now, when the os frontis and the parietal bones are both growing at the fame time? Hence it happens, that the heads of young people, in which the bones begin to touch each other, increafe flowly; and that the proportionate increafe of the volume of the head is greater in three inonths in the foetus, than it is perhaps in twenty-four months at the age of fourteen or fifteen years.

The futures, exclufive of their advantage in fulfpending the proceffes of the dura mater, are evidenly of great utility in preventing the too great extent of fractures of the fkull.--Suppofe, for inftance, that by a fall or blow, one of the bones of the cranium becomes fractured. The fiffure, which in a head compofed of only one bone, would be liable to extend itfelf through the whole of it, is checked, and fometimes perhaps fopped by the firft future it ancets, and the effects of the injury are confined to the bone on which the blow was received. Ruyfch indeed, and fome others, will not allow the futures to be of any fuch ufe; but cafes have been met with where they feemed to have had this effect, and in young fubjects their utility in this refpect muft be ftill more obvious.
The fpherical hape of the head feems likewife to render it more capable of refifting external violence than any other fhape would do. In a vault, the parts mutually fupport and frengthen each other, and this lappens in the cranium.

§ 2. Proper Bones of the Face.

I8 Of the bones of the face.

The face, which confifts of a great number of bones, is commonly divided into the upper and lower jaws. The upper jaw confifts of thirteen bones, exclufive of the teeth. Of thefe, fix are placed on each fide of the maxilla fuperior, and one in the middle.
The bones, which are in pairs, are the offa malarum, offa maxillaria, offa nafi, offa unguis, offa palati, and offa fpongiofa inferiora. The fingle bone is the vomer.
Thefe are the prominent fquare bones which are Of the offa placed under the cyes, forming part of the orbits and malarum. the upper part of the cheeks. Each of them affords three furfaces ; one exterior and a little convex ; a fecond fuperior and concave, forming the infcrior part and fides of the orbit; and a third pofterior, irregular, and hollowed for the lodgement of the lower part of the temporal mufcle.

The angles of each bone form four proceffes, two of which may be called orbitar proceffes; of thefe the upper one is joincd by future to the os frontis, and that below to the maxillary bone. The third is conneeted with the os fphenoides by means of the tranf-
verfc future; and the fourth is joined to the zy goma- Olteology. tic procefs of the temporal bone, with which it forms the zygoma.

20
Thefe bones, which are of a very irregular figure, of the ofia are fo called becaufe they form the moft confiderable maxillaria portion of the upper jaw. They are two in number, fuperiora. and generally renain diftinct through lifc.

Of the many proceffes which are to be feen on thefe bones, and which are connected with the bones of the face and fkull, we flatl defcribe only the moft remarkable.

One of thefe proceffes is at the upper and fore part of the bone, making part of the fide of the nofe, and called the nafal procefs. Another forms a kind of circular fiveep at the inferior part of the bone, in which are the alveoli or fockets for the teeth : this is called the alveolar procefs. A third procefs is united to the os malæ on each fide. Between this and the nafal procefs there is a thin plate, which forms a flare of the orbit, and lies over a paflage for the fuperior maxillary veffels and nerves. - The alveolar procefs has pofteriorly a confiderable tubcrofity on its internal furface, called the maxillary tuberofity.

Behind the alveolar procefs we obferve two horizontal lametlx, which uniting together, form a part of the roof of the inouth, and divide it froin the nofe. The lollownefs of the roof of the mouth is owing to this partition's being feated fomewhat higher than the alvcolar procefs.- At the fore part of the horizontal lamellx there is a hole called foramen incifivum, through which fmall blood-veffels and nerves go between the mouth and nofe.
In viewing thefe bones internally, we obferve a foffa in the inferior portion of the nafal procefs, which, with the os unguis and os fpongiofum inferius, forms a paffage for the lachrymal duct.

Where thefe two bones are united to each other, they project fomewhat upwards and forwards, leaving between them a furrow, into which the lower portion of the feprum nafi is admitted.

Each of thefe bones being hollow, a confiderable finus is formed under its orbitar part. This cavity, which is ufually named after Highmore, though it was defcribed by Fallopius and others before his timc, is lined with the pituitary membrane. It is intended for the fame purpofes as the other finufes of the nofe, and opens into the noftrils.

The offa maxillaria are connected with the greater part of the bones of the face and cranium, and affift in forming not only the checks, but likewife the palate, nofe, and orbits.

The offa nafi form two irregular fquares. They are of the offa thicker and narrower above than below. Externally nafi. they are formewhat convex, and internally fightely concave. Thefe bones conftitute the upper part of the nofe. At their fore part they are united to each other, above to the os frontis, by their fides to the offa maxillaria fuperiora, pofteriorly and interiorly to the feptum narium, and below to the cartilages that compofe the reft of the noftrils.

Thefe little tranfparent bones owe their name to of the offa their fuppofed refemblance to a finger-nail. Soinctimes unguiso they are called offa lachrymalia, from their concurring with the nafal procefs of each maxillary bozie in forming a lodgenent for the lachrymal fac and duct.

The offa unguis are of an irregular figure. Their external furface confifts of two finooth parts, divided by a middle ridge. One of thefe parts, which is concave and neareft to the nofe, ferves to fupport the lachrymal fac and part of the lachrymal duct. The othicr, which is flat, forms a fmall part of the orbit.

Each of thefe boncs is comected with the os frontis, os ethmoides, and os maxillare fuperius.
Thicfe bones, which are fituated at the back part of the roof of the mouth, between the os fphenoides and the offa maxillaria fuperiora, are of a very irregular flape, and ferve to form the nafal and maxillary foffa, and a finall portion of the orbit. Where they are united to each other, they rife upinto a fpine on their internal furface. This fpine appcars to be a continuation of that of the fuperior maxillary bones, and helps to form the feptum narinn.

Thefe bones are joined to the offa maxillaria fuperiora, os ethmoides, os fphenoides, and vomer.

This bone derives its name from its refemblanice to a plouglifhare. It is a long and flat bone, fomewhat thicker at its back than at its fore part. At its upper part we obferve a furrow extending through its whole length. The pofterior and largeft part of this furrow receives a procefs of the fplenoid bone. From this the furrow advances forwards, and becoming narrower and fhallower, receives fome part of the nafal lamella cihmoidea ; the reff ferves to fupport the middle cartilage of the nofe.

The inferior portion of this bone is placed on the nafal fpine of the maxillary and palate bones, which -we mentioned in our defcription of the offa palati.

The vomer is mited to the os fphenoides, os ethmoides, of maxillaria fuperiora, and offa palati. It forms part of the fcptum 11arium, by dividing the back part of the nofe into two ioftrils.

The parts which are ufually defcribed by this name, do not feem to deferve to be diftinguifhed as diftinct bones, except in young fubjects. They confift of a fpongy lamella in each noftril, which is united to the fpongy lamina of the ethmoid bone, of which they are by fome confidered as a part.

Each of thefe lamellæ is longeft from behind forwards; with its convex furface turned towards the feptum narium, and its concave part towards the maxillary bone, covering the opening of the lachrymal duct into the nofe.

Thefe bones are covered with the pituitary membrane; and, befides their connection with the ethmoid bone, are joincd to the offa maxillaria fupcriora, offa palati, and offa unguis.

The maxilla inferior, or lower jaw, which in its fhape refembles a horfe-fhoe, confifts of two diftinet bones in the foetus; but thefe unite together foon after birth, fo as to form only one bone. The upper cdge of this bonte, like the os maxillare fupcrins, has an alveolar procefs, furnifhed with fockets for the teeth.

On each fidc, the pofterior part of the hone rifes almoft perpendicularly into two proceffes. The higheft of thefe, called the coronoid procefs, is pointed and thin, and ferves for the infertion of the temporal mufcic. The other, or condyloid procefs, as it is called, is fhorter and thicker, and ends in an oblong rounded head, which is reccived into a foffa of the temporal bone, and is formed fo: a moreable articulation with
the cranium. This joint is furnified with a moveable cartilage. At the botton of each coronoid procefs, on its inner part, we obferve a foramon exténding under the roots of all the tecth, and terminating at the outer furface of the bone near the cliin. Each of thefe canals tranfinits an artcry, vein, and nerve, from which branches are fent off to the tceth.

The lower jaw is capable of a great varicty of motion. By fliding the condyles from the cavity towards the eminences on each fide, we bring it horizontally forwards, as in biting; or we may bring the condylcs only forward, and tilt the reft of the jaw backward, as in opening the mouth. We are likewifc able to flide the condyles alternately backwards and forwards from the cavity to the emincnce, and vice ver $f a$, as in grinding the teeth. The cartilages, by adapting themfelves to the different inequalities in thefe feveral motions of the jaw, ferve to fecure the articulation, and to prevent any injuries from friction.

The alveolar proceffes are compofed of an outer and inner bony plate, united togerher by thin partitions, which at the fore part of the jaw divide the proccfics into as many fockets as there are teeth. But at the back part of the jaw, where the teeth have more than one root, we find a diftinct cell for each root. In hoth jaws thefc proceffes begin to be formed with the teeth; they likewife accompany then in their growth, and gradually difappear when the teeth are renoved.
§ 3. Of the Teeth.

The tecth are bones of a particular ftructure, form- of the ed for the purpofes of maftication and the articulation teeth. of the voice. It will be neceffary to confider their compofition and figure, their number and arrangement, and the time and order in which they appear.

In each tooth we may diftinguifh a body, a neck, and a root or fangs.

The body of the tooth is that part which appears above the gums. The root is fixed into the focket, and the neck is the middle part between the two.

The teeth are compofed of two fubftances, viz. enamel and bone. The enamel, or the vitreous or cortical part of the tooth, is a white and very hard and compact fubftance peculiar to the teeth, and appears fibrous or friated when broken. This fubftance is thickeft on the grinding furface, and becoming gradnally thinner, terminates infenfibly at the neck of the tooth. Ruyfcll * affirmed, that he could trace the *Thefaur arteries into the hardeft part of the teeth; Liewen- 1o. no. 27 . hoeck + furpected the fibres of the enamel to be fo \dagger Arsan. many veffels; and Monro \ddagger fays, he has frequently in- Natur. conjected the veffels of the teeth in children, fo as to make tinuat. Epithe infide of the cortex appear perfecily red. But it ${ }^{\text {Pol }}$. is certain, that it is not tinged by a madder diet, and the H^{\ddagger}. of that no injection will ever reach it, fo that it has no Bones. appearance of being vafcular ***.

The bony part, which compofes the inner fubfiance of the body, neck, and root of the tooth, refembles other bones in its ftructure, but it is much harder than the moft compact part of bones in general. As a tooth when once formed reccives no tinge from a madder diet, and as the minuteft injections do not penetrate into its fubfance, this part of the tooth lias, like the enamel, been fuppofed not to be vafcular. But when we confuler that the fangs of a toath are invefted

Ofeology. by a periofeum, and that the fwellings of thefe fangs are analogous to the fivellings of other bones, we may reafonably conclude, that there is a fimiliarity of fructure ; and that this bony part has a circulation through its fubftance, although from its hardneis we are unable to denonftrate its veffels.

In each tooth we find an inner cavity, into which enter an artery, vein, and nerve. This cavity begins hy a fmall opening, and becoming larger, terminates in the body of the tooth. In advanced life this hole fometinies clofes, and the tooth is of courfe rendered infenfible.

The periofteum furrounds the teeth from their fangs to a little beyond their bony fockets, where we find it adhering to the gums. This membrane, while it_inclofes the teeth, ferves at the fame time to line the fockets, fo that it may be confidered as common to both.

The teeth are likewife fecured in their fockets by means of the gums; a red, vafcular, firm, and elaftic fubftance, that poffeffes but little fenfibility. In the gums of infants we find a hard ridge extending through their whole length, but no fuch ridge is to be feen in old people who have loft their teeth.

The number of the teeth in botl jaws at full maturity, ufually varies from twenty-eight to thirty-two. They are commonly divided into three claffes, viz. incifores, canini, and grinders or nolares (\boldsymbol{H}). The incifores are the four teeth in the fore part of each jaw. They have each of them two furfaces; one anterior and convex, the other pofterior and flightly concave, both of which terminate in a fharp edge. They are callcd incifores from their ufe in dividing the food. They are ufually broader and thicker in the upper than in the under jaw ; and, by being placed fomewhat obliquely, generally fall over the latter.

The canini derive their namc from their refemblance to a dog's tufks, being the longeft of all the teeth. We find one on each fide of the incifores, fo that there are two canini in each jaw. Their fang refembles that of the incifores, but is much larger; and in their fhape they appear like an incifor with its edge worn off, fo as to terminate in a narrow point.

Thefe teeth not bcing calculated for cutting and dividing the food like the incifores, or for grinding it like the molares, feem to be intended for laying hold of fubftances (I).

The molares or grinders, of which there are ten in each jaw, are fo called, becaufe from their flape and fize they are firted for grinding the food. Eacli of the incifores and canini is furnifled only with one fang; but in the molares of the under jaw we conftantly find two fangs, and in thofe of the upper jaw three fangs. Thefe fangs are fometimes feparatcd into two points, and each of thefe points has fometimes been defcribed as a diftinct fang.

The two firft of the molares, or thole ncareft to the Ofeology. canine teeth on each fide, differ from the other threc, and are with great propriety named bicu/pides by Mr Hunter. They have fometimes only one root, and feem to be of a middle nature between the incifores and the larger molares. The two next are much larger. The fifth or laft grinder on each fide is fmaller and fhorter than the reft; and from its not cutting the gam till after the age of twenty, and fometimes not till much later in life, is called dens fapientic.
There is in the ftructure and arrangement of all thefe teeth an art which cannot be fufficiently admired. To underfand it properly, it will be neceffary to confider the under jaw as a kind of lever, with its fixed points at its articulations with the temporal bones:-it will be right to obferve, too, that its powers arife from its different mufcles, but in elevation chicfly from the temporalis and maffeter; and that the aliment conftitures the object of refiftance. It will appear, then, that the molares, by being placed neareft the centre of motion, are calculated to prefs with a mnch greater force than the other teeth, independent of their grinding powers which they poffefs by means of the pterygoid mufcles; and that it is for this reafon we put between them any hard body we wilh to break.

The canini and incifores are placed farther from this point, and of courfe cannot exert fo much force; but they are made for cutting and tearing the food, and this form feems to make amends for their deficiency in frength.

There are examples of childrea who have come into. the world with two, three, and even four teeth; but thefe examples are very rare ; and it is feldom before the feventh, eighth, or ninth month after birth, that the incifores, which are the firft formod, begin to pafs through the gum. The fymptoms of dentition, however, in confequence of irriation from the teeth, frequently take place in the fourth or fifth month.-About the twentieth or twenty-fourth month, the canini 2nd two molares make their appearance.

The dangerons fymptoms that fometimes accompany dentition, are owing to the preffure of the tecth on the gum, which they irritate fo as to excite pain and inflammation. This irritation feems to occafion a gradual wafting of the gum at the part, till at length the tooth makes its appearance.

The fymptoms are more or lefs alarming, in propoition to the refiftance which the gum affords to the teeth, and according to the number of teeth which may eliance to feek a paffage at the fame time. Were they all to appear at once, children would fall victims to the pain and exceffive irritation; but Nature has fo very wifely difpofed them, that they ufually appear one after the other, with fome diftance of time between each. The firf incifor that appears is generally in the lower jaw, and is followed by one in the up-
(н) Mr Hunter has thought proper to vary this divifion. He retains the old name of incifores to the four fore teeth, but he dillinguifhes the canine teeth by the name of the cufprdati. The two teeth which are next to thefe, and which have been ufaally ranked with the molares, he calls the bicu $\int_{\mathcal{D}}$ ides; and he gives the name of grinders only to the three laft teeth on each fide.
(1) Mr Hunter remarks of thefe teeth, that we may tracc in than a finiliarity in fhape, fituation, and ufe, from the moft imperfcetly carnivorous animal, which we believe to be the hunain fgecies, to the lion, which is the moft perfectly carnivorons.

Ofteology, per jaw. Sometimes the canini, but more commonly one of the molares, begins to pafs through the gum firft.

Thefe 20 teetl, viz. eight incifores, four canini, and eight molares, are called temporary or milk teeth, becaufe they are all fhed between the age of feven and I 4, and are fucceeded by what are called the permanent of adult teeth. The latter are of a firmer texture, and have larger fangs.

Thefe adult teeth being placed in a diftinct fet of alveoli, the upper fockets gradually difappear, as the under ones increafe in fize, till at length the temporary, or upper teeth, having no longer any fupport, confequently fall out.

To thefe 20 teeth, which fucceed the temporary oncs, 12 others are afterwards added, viz. three molares on each fide in both jaws: and in order to make room fur this addition, we find that the jaws gradually lengthen in proportion to the growth of the teeth; fo that with 20 teeth, they feem to be as completely filled as they are afterwards with 32. This is the reafon why the face is rounder and flatter in children than in adults.

With regard to the formation of the teeth, we may obferve, that in a foetus of four months, the alveolar procefs appears only as a fhallow longitudinal groove, divided by minute ridges into a uumber of internediate depreffions; in each of which we find a fmall pulpy fubfance, furrounded by a vafcular membrane. This pulp gradually offifies, and its lower part is lengthened out to form the fang. When the bony part of the tooth is formed, its furface begins to be incrufted with the enamel. How the latter is formed and depofited, we are not yet able to determine.

The rudiments of fome of the adult teeth begin to be formed at a very early period, for the pulp of one of the incifores may generally be perceiyed in a foetus of eight months, and the oflification begins in it foon after birth. The firft bicufpis begins to offifiy about the fifth or fixth, and the fecond about the feventh year. The firft adult grinder cuts the gum abont the $12 t h$, the fecond about the 18th, and the third, or deres fapientic, ufually between the 20th and 3orh year.

The teeth, like other bones, are liable to be affected by difeafe. Their removal is likewife the natural confequences of old age; for as we advance in life, the alveoli fill up, and the teeth, efpecially the incifores, fall out. When this happens, the chin projects forward, and the face is much fhortened.
§ 4. Of the Os Hyoides. (k)
28. The os hyoides, which is placed at the root of the tongue, was fo called by the ancients on account of its fuppofed refemblance to the Greek letter v.

It will be neceffary to diftinguifh in it, its body, horns, and appendices.

The body, which is the middle and broadeft part of the bone, is fo placed that it may be eafily felt at the fore part of the throat. Anteriorly it is irregularly
convex, and its inner furface is unequally concave. Its Ofteology. cornua, or horns, which are flat and a little bent, being much longer than the body part, may be defcribed as forming the fides of the u. The appendices, or little horns, as they are called by M. Winflow, and fome other writers, are two proceffes which rife up from the articulations of the cornua with the body, and are ufually conneeted with the ftyloid procefs on cach fide by means of a ligament.

The ufes of this bone are to fupport the tongue, and afford attachment to a great number of mufcles; fome of which perform the motions of the tongue, while others act on the larynx and fauces.

Sect. III. Of the Bones of the Trunk.

The trank of the ikeleton confifts of the fpine, the thorax, and the pelvis.

> §1. Of the Spine.

The fpine is compofed of a great number of bones called vertreba, forming a long bony column, in figure not much unlike the letter f. This column, which extends from the head to the lower part of the body, may be faid to confift of two irregular and unequal pyramids, united to each other in that part of the loins where the laft lumbar vertebra joins the os facrum.

The vertebræ of the upper and longeft pyramid are called true vertebree, in contradiftinction to thofe of the lowermoft pyramid, which, from their being immoveable in the adult, are ftyled falfe vertebre. It is upon the bones of the fpine that the body turns; and it is to this circumftance they owe their name, which is derived from the Latin verb vertere, to return.

The true vertrebræ are divided into three claffes of cervical, darfal, and lembar vertebræ. - The falfe vertebre confift of the os facrum and os coccygis.

In each vertebra, as in other bones, it will be neceffary to remark the body of the bone, its proceffes, and cavities.

The body, which is convex before, and concave behind, where it affifts in forming the cavity of the fpine, may be compared to part of a cylinder cut off tranfverfely.

Each vertebra affords feven proceffes. The firft is at the back part of the vertebra, and from its fhape and dircction is named the $\int p$ inous proce $\int s$. On each fide of this are two others, which, from their fituation with refpect to the fpine, are called tranfoerfe proceffes. The four others are fyled oblique or articular proceffes. They are much fmaller than the fpinous or tranfverfe ones. Two of them are placed on the upper, and two on the lower part of each vertebra, rifing from near the bafis of each tranfverfe procefs. They have gotten the name of oblique proce(fes, from their fituation with refpect to the proceffes with which they are articulated; and they are fometimes ftyled articular procelfes, from the manner in which they are articulated with each other; the two fuperior proceffes of one vertebra being articulated
with
(к) This bone is very feldom preferved with the $\mathfrak{k k e l e t o n , ~ a n d ~ c a n n o t ~ b e ~ i n c l u d e d ~ a m o n g ~ t h e ~ b o n e s ~ o f ~ t h e ~}$ head, or any other divifion of the fkeleton. Thomas Bartholin has perhaps very properly defcribed it among parts contained in the mouth; but the gencrality of anatomical writers have placed it, as it is here, after the bones of the face.

Ofteology, with the two inferior proceffes of tlie vertebra above it. Each of thefe proceffes is covered with cartilage at its articulation, and theirarciculations with each other are by a fpecies of ginglimus.

In each vertebra, between its body and its proceffes, we find a hole large enough to admit a finger. Thefe holes or foramina, correfpond with each other through all the vertebræ, and form the long bony channel in which the final marrow is placed. We may likewife oblerve four notches in each vertebra. Two of thefe notches are at the 1pper, and two at the lower part of the bone, between the oblique proceffes and the body of the vertebra. Each of thefe notches meeting with a fimilar opening in the vertcbra above or below it, forms a foramen tor the paffage of blood-veffels, and of the nerves ont of the fine.

The bones of the fpine are united together by means of a fubftance, which in young fubjects appears to be of a ligamentous, but in adults more of a cartilaginous nature. This intervertebral fubftance, which forms a kind of partition between the feveral vertebræ, is thicker and more flexible between the lumbar vertebre than in the other parts of the fpine, the moft confiderable motions of the trunk being performed on thofe vertebræ. This fubftance being very elaftic, the extenfion and flexion of the body, and its motion backwards and forwards, or to either fide, are performed with great facility. This elafticity feems to be the reafon why people who have been long ftanding, or have carried a confiderable weight, are found to be fhorter than when they have been long in bed. In the two firft inftances the intervertebral cartilages (as they are ufually called) are evidently more expofed to compreffon than when we are in bed in an horrizontal pofture.

In advanced life thefe cartilages becone Grivelled, and of courfe lofe much of their elafticity. This may ferve to account for the decreafe in flature and the fooping forward which are ufually to be obferved in ald people.

Befides the connection of the feveral vertebre by means of thisintervertebral fubstance, there are likewife many ftrong ligaments, both external and internal, which unite the bones of the fpine to each other. Their union is allo ftrengthencd by a variety of ftrong mofeles that cover and furround the fpine.

The bones of the fpine are found to diminifh in denfity, and to be lefs firm in their texture in proportion as they increafe in bulk; fo that the lowermoft vertebre, thongh the largen, are not fo heavy in proportion as the upper ones. By this means the fize of thefe bones is increafed witlout adding to their weight: a circumfance of no little importance in a part like the fpine, whicl, befides flexibility and fupplenefs, feems to require lightnefs as one of its effential properties.

In very young children, each vertebra confifts of three bony pieces united by cartilages which afterwards ofilify.
$3 I$ Vertebre firmere are feven vertebre of the neck-they are of a of theneck. tranfverfe proceffes are forked for the lodgment of mufcles, and at the bottom of each we obferve a foramen, throngh which pais the cervical artery and vein. The firft and fecond of thefe vertebre muft be deferibed more particnlarly. The firft approaches almoft to an oval flape-On its fuperior furface it has two cavi-
ties which admit the condyles of the occipital bone Ofteology. with which it is articulated. This vertebra, whicl is called atlas from its fipporting the head, cannot well be defcribed as having either body or fpinous procefs, being a kind of bony ring. Anteriorly, where it is articulated to the odontoid procefs of the fecond vertebra, it is very thin. On its upper furface it has two cavities which admit the condyles of the occipital bone. By this connection the head is allowed to move forwards and backwards, but has very little motion in any other direction.

The fecond vertebra has gotten the name of dentata, from its having, at its upper and anterior part, a procefscalled the odontoid or tooth-like procefs, which is articnlated with the atlas, to which this fecond vertebra may be faid to ferve as an axis. This odontoid procefs is of a cylindrical flape, fonewhat flattened, however, anteriorly and pofteriorly. At its fore-part where it is received by the atlas, we may obferve a fmooth, convex, articulating furface. It is by means of this articulation that the head performs its rotatory motion, the atlas in that cafe moving upon this odontoid procefs as upon a pivot. But when this motion is in any confiderable degree, or, in other words, wheu the head moves much either to the right or left, all the cervical vertebræ feem to affif, otherwife the fpinal marrow would be in danger of being divided tranfverfèly by the firft vertebra.

The fpinous procefs of each of the ccrvical vertebræ is forter, and their articular proceffes more obliqne, than in the other bones of the fine.

Thefe 12 vertebræ are of a middle fize between thofe of the neck and loins. At their fides we may obferve two depreffions, one at the upper and the other at the lower part of the body of each vertebre ; which uniting with fimilar deprefions in the vertebræ above and below, form articulating firfaces, covered with cartilages, for receiving the heads of the ribs; and at the forepart of their tranfverfe procefs (cxcepting the two laft) we find an articulating liurface for receiving the tuberofity of the ribs.

Thefe five vertebræ differ only from thofe of the back in their being larger, and in having their finoins proceffes at a greater diftance from each other. The inoft confiderable motions of the trunk are made on thefe vertebræ; and thefe motions could not be performed with fo much eafe, wore the proceffes placed nearer to each other.

The os facrum, which is compofed of five or fix pieces in young fubjects, becomes one hone in more advanced age.
It is nearly of a triangular figure, its inferior portion being bent a little forwards. Its fuperior part has two oblique proceffes which are articulated with the laft of lhe lumbar vertebræ; and it has likewife commonly three fimall fpinous proceffes, which gradually become fhorter, fo that the lowermof is not fo long as the fecond, nor the fecond as the uppermoft. Its tranfverfe proceffes are formed into one oblong procefs, which becomes gradually finaller as it defcends. Its concave or anterior fide is ufually finooth, but its pofterior conver fide has many prominences (the moft remarkable of which are the fpinous proceffes juft now mentioned), which are filled up and corered with the mufaular and tendinous parts behind. derived from the fpinal marrow, which is continued even here, being lodged in a triangular cavity, that becomes finaller as it defcends, and at length terininates obliquely at the lower part of this bone. Below the third divifion of the os facrum, this canal is not completely bony as in the reft of the fpine, being fecured at its back part only by a very ftrong membrane, fo that a wound at this part munt be extremely dangerous.

The os facrum is united laterally to the offa innominata or lip-bones, and below to the coccyx.

The coccyx, which, like the os facrum, is in young people made up of three or four diftinct parts, ufually becomes one bone in the adult flate.

It ferves to fupport the inteftinum rectumn ; and, by its being capable of fome degree of motion at its articulation with the facrum, and being like that bone bent forwards, we are enabled to fit with eafe.

This bone is nearly of a triangular fhape, being broadeft at its upper part, and from thence growing narrower to its apex, where it is not bigger than the little finger.

It has got its name from its fuppofed refemblance to a cuckow's beak. It differs greatly from the vertebre, being commonly without any proceffes, and liaving no cavity for the fpinal marrow, or foramina for the tranfmiffion of nerves.

The finine, of which we have now finifled the anatomical defcription, is deftined for many great and important ufes. The medulla fpinalis is lodged in its bony canal fecure from external injury. It ferves as a defence to the abdominal and thoracic vifcera, and at the fame time fupports the head, and gives a general firmnefs to the whole trunk.

We have before compared it to the letter f, and its different turns will be found to render it not very unlike the figure of that letter.-In the neck we fee it projecting fomewhat forward to fupport the head, which without this affiftance would require a great number of muf-cles.-Lower down, in the thorax, we find it taking a curved direction backwards, and of courfe increafing the cavity of the cheft. After this, in the loins, it again projects forwards in a direction with the centre of gravity, by which means we are eafily enabled to keep the body in an erect pofture, for otherwife we flould be liable to fall forward. Towards its inferior extremity, lowever, it again recedes backward, and thus affifts in forming the pelvis, the name given to the cavity in which the urinary bladder, inteftinum rectum, and other vifcera are placed.

If this bony column had been formed only of one piece, it would have heen inuch more eafily fractured than it is now: and by confining the trunk to a ftiff fituation, a variety of motions would have been altogether prevented, which are now performed with eafe by the great number of bones of which it is compofed.

It is firm, and yet to this firmnefs there is added a perfect flexibility. If it be required to carry a load upon the head, the neck becomes fiff with the affiftance of its mufcles, and accommodates itfelf to the load, as if it was compofed only of one bone-In ftooping likewife, or in turning to either fide, the fine
turns itfelf in every direction, as if all its boncs wcre $\underbrace{\text { Ofteology. }}$ feparated from each other.
In a part of the body, like the fipinc, that is made up of fo great a number of bones, and intended for fuch a variety of motion, there muft be a greater darger of diflocation thau fracture ; but we fhall find, that this is very wifely guarded againft in every direction by the proceffes belonging to each vertebra, and by the ligaments, cartilages, \&c. by which thefe bones are connected with each other.

> § 2. Of the Bones of the Thorax.

The thorax, or cheft, is compofed of many bones, viz. the fternum which is placed at its anterior part, twelve ribs on each fide which make up its lateral parts, and the dorfal vertebre which conftitute its pofterior part. Thefe laft have been already defcribcd.

The fternum is the long bone which extends itfelf from the upper to the lower part of the breaft anteriorly, and to which the ribs and the clavicles are articulated.

In children it is compofed of feveral bones united by cartilages; but as we advance in life, moft of thefe cartilages offify, and the fternum in the adult fate is found to confift only of three pieces, and fometimes become one bone. It is however generally defcribed as being compofed of three parts-one fuperior, which is broad, thick, and fhort; and one in the middle, which is thinner, narrower, and longer than the other.

Itterminatesat its lower part by a third piece, whiciz is called the xyphoid, or fword-like cartilage, from its fuppofed refemblance to the blade of a fword, and becaufe in young fabjects it is commonly in a cartilaginous fate.

We have already obferved, that this bone is articklated with the clavicle on cach fide. It is likewife joined to the fourteen true ribs, viz. feven on its right and feven on its left fide.

The ribs are bones fhaped like a bow, forming the fides of the cheft. There are twelve on each fide. They are diftingnifled into true and falfe ribs: The feven upper ribs which are articulated to the fternum are cailed true ribs, and the five lower ones that are not immediately attached to that bone are called falfe ribs.

On the inferior and interior furface of each ryb, we obferve a finuofity for the lodgment of an artery, vein, and nerve.

The ribs are not bony through their whole length, their anterior part being cartilaginous. They are articulated with the vertebre and fiernum. Every rib (or at leaf the greater number of them) has at its pofterior part two proceffes; one at its extremity called the head of the rib, by means of which it is articulated with the body of two vertebre; and another, called its tuberofity, by which it is articulated with the tranfverfe procefs of the loweft of thefe two vertebre. The firft rib is not articulated by its extremity to two vertebræ, being fimply attached to the upper part of the firft vertebra of the back. The feven fuperior or true ribs are articulated anteriorly with the fternum by their cartilages; but the falfe ribs are fupported in a different manner-the cighth, which is the firft of thefe ribs, being

Part 1.

A $\mathrm{N} \quad \mathrm{A} \quad \mathrm{T} \quad \mathrm{O} \quad \mathrm{M} \quad \mathrm{Y}$.
$\underbrace{\text { Oneology. being attached by its cartilage to the feventh; the ninth }}$ to the eightl, \&c.

The two lowermof ribs differ likewife from all the reft in the following particulars: They are articulated only with the body of the vertelora, and not with a tranfverfe procefs; and anteriorly, their cartilage is loofe, not being attached to the cartilages of the other ribs; and this feems to be, becaufe the moft confiderable motions of the trunk are not performed on the lumbar vertebre alone, but likewife on the two laft vertebræ of the back; fo that if the fe two ribs had been confined at the fore part like the other ribs, and had been likewife articulated with the bodies of two vertebræ, and with the tranfverfe proceffes, the motion of the two laft vertebræ, and confequently of the whole trunk, would have been impeded.

The ribs help to form the cavity of the thorax; they afford attachment to different mufcles; they are ufeful in refpiration; and they ferve as a fecurity to the heart and lungs.
§3. Of the Bones of the Pelvis.
The pelvis is compofed of the os facrum, os coccygis, and two offa innominata. The two firft of thefe bones were included in the account of the fpine, to which they more properly belong.

In children, each os innominatum is compofed of three diftinct bones; but as we advance in life the intermediate cartilages gradually offify, and the marks of the original feparation difappear, fo that they become one irregular bone ; ftill however continuing to retain the names of ilium, ifchium, and pubis, by which their divifions were originally diftinguifhed, and to be defcribed as three different bones by the generality of anatomifts. The os ilium forms the upper and moft confiderable part of the bone, the os ifchium its lower and pofterior portion, and the os pubis its fore part.

The os ilium or hannch bone, is articulated pofte- riorly to the os facrun by a firm cartilaginous fubftance, and is united to the os pubis before and to the os ifchium below. Its fupcrior portion is thin, and terminates in a ridge called the crifta or fpine of the ilinm, and more commonly known by the name of the haunch. This chrifta rifes up like an arch ; being turned fomewhat outwards, fo as to refemble the wings of a phacton.

Externally this bone is unequally prominent and hollowed for the lodgement of mufcles; internally we find it fmooth and concave. At its lower part there is a confiderable ridge on its inner furface. This ridgc extends from the os facrum, and correfponds with a fimilar prominence both on that bone and the ifchium; forms with the inner part of the offa pubis what in midwifery is termed the brim of the pelvis.

The crifta, or fpine, which at firft is an epiphyfis, has two confiderable tuberofities; one anteriorly, and the other pofteriorly, which is the largeft of the two: Thefe, from their projecting more than the parts of the bone below them, lave gotten the name of final proceffes. From the anterior fpinous procefs, the fartorions and tenfor vagina femoris mufcles lave their origin ; and below the pofterior procefs we obferve a confiderable niche in the bone, which, in the recent fubjece, is formed into a large foramen, by means of a Atrong ligament that is ftretcised over its lower part
from the os facrum to the flarp-pointed procefs of the oncolog ifchium. This hole affords a paffage to the grcat ficiatic nerve, and to the pofterior crural veffels under the pyriform mufcle, part of which likewifc palfes ou: here.

The os ifchium, or hip-bone, which is of a very ir- Osifchi, reg:lar figure, confitutes the lower lateral parts of the pelvis, and is commonly divided into its body, tuberofity, and rannus. The body forms the lower and moof confiderable portion of the acetabulum, and fends a fharp-pointed procefs backwards, called the fpine of the ifchium. To this procefs the ligament adheres, which was juft now fpoken of, as forming a foramen for the paffage of the fciatic nerve.- The tuberofity, which is thic loweft part of the trunk, and fiupports us when we fit, is large and irregular, affording origin to feveral mufcles. From this tulerofity we find the bone becoming thinner and narrower. This part, whicl has the name of ramus or branch, paffes forwards and upwards, and concurs with the ramus of the os pubis, to form a large hole called the foramen magnumn ifchii, or thyroiderun, as it is fometimes named, from its refemblance to a door or flield. This hole, which in the recent fubject is clofed by a frong membrane called the obturator ligament, affords throngh its whole circunference attachment to mufcles. At its npper part where we obferve a niche in the bone, it gives pallage to the obturator veffels and nerves, which go to the inner part of the thighl. Nature feems every where to avoid an unneceffary weight of bone, and this foramen, no doubt, ferves to lighten the bones of the pelvis.

The os pubis or flare-bone, which with its fellow os pubis forms the forc-part of the pelvis, is the fmalleft divifion of the os innominatum. It is united to its fellow by means of a trong cartilage, which forms what is called the fymphy fis pubis.

In each os pubis we may diftinguifh the body of the bone, its angle, and ramus. The body or outer part is united to the os ilium. The angle comes forward to form the fymphyfis, and the rames is a thin procefs which unites with the ramus of the ifchium, to form the foramen thyroideum.

The tlurce bones we have defcribed as compofing each os innominatum, all anift in forming the acetabulum, in which the liead of the os femoris is received.

This cavity is every where lined with a fimooth cartilagc, excepting at its inner part, where we inay obferve a little foffa, in which are lodyred the mucilaginous glands of the joint. We may likewife notice the pit or depreffion made by the round ligament, as it is improperly called, which, by adhering to this cavity and to the head of the thigh-bone, helps to fecure the latter in the focket.
Thefe bones, which are united to each other and to the fipine by many very ftrong ligaments, ferve to fupport the trunk, and to connect it with the lower extremities; and at the fame time to form the pelvis or bafon, in which are lodged the intefines and urinary bladder, and in women the uterus; fo that the ftudy of this part of ofteology is of the utmoft importance in midwifery.
It is worthy of obfervation, that in women the os facrum is ufially floorter, broader, and more hollowed, the offa ilia more expanded, and the inferior opening of the pelvis larger than in mien.

SECT. IV. Of the Extremities.
These parts of the fkeleton confilt of the npper extrenity and the lower.
§ i. Of the Upper Extremity.
This confifts of the fhoulder, the arm, and the hand.

1. Of the Shoulder.

The fhoulder confifts of two bones, the clavicula and the fcapula.
The former, which is fo named from its refemblance to the key in ufe amongf the ancients, is a little curved at both its extremities like an italic f. It is likewife called jugutum, or collar-bone, from its fituation. It is about the fize of the little finger, but longer, and being of a very fpongy fubftance is very liable to be fraetured. In this, as in other long bones, we may diltinguifh a body and two extremities. The body is rather flattened than rounded. The anterior extremity is formed into a flightly convex head, which is nearly of a triangular flape. The inferior furface of the head is articulated with the fternum. The pofterior extremity, which is flatter and broader than the other, is conneeted to a procefs of the fcapula, called acromion. Roth thefe articulations are fecured by ligaments, and in that with the fternum we meet with a moveable cartilage, to prevent any injury from friction.

The clavicle ferves to regulate the motions of the Icapula, by preventing it from being bronght too much forwards, or carried too far backwards. It affords origin to feveral mufcles, and helps to cover and protent the fubclavian veffels, which derive thcir name from their fitation under this bone.
The fcapula, or fhoulder-blade, which is nearly of a triangular flape, is fixed to the pofterior part of the true ribs, fomewhat in the manncr of a buckler. It is of a very unequal thicknefs, and, like all other broad, flat bones, is fomewhat cellular. Exteriorly it is convex, and interiorly concave, to accommodate itfclf to the convexity of the ribs. We obferve in this bone three unequal fides, which are thicker and ftronger than the body of the bone, and are therefore termed its coffe. The largeft of the thrce, called alfo the bafis, is turned towards the vertebre. Another, which is lefs than the former, is below this; and the third, which is the leaft of the three, is at the upper part of the bone. Externally the bone is clevated into a confiderable fpine, which rifing fimall at the bafis of the fcapula, hecomes gradually higher and broader, and divides the outer furface of the bone into two foffe. The fuperior of thefe, which is the fmalleft, ferves to lodge the fupra fpinatus mufle ; and the inferior foffa, which is much larger than the other, gives origin to the infra fpinatus. This fine terminates in a broad and flat proceis at the top of the fhoulder, called the prosiffes acroasion, to which the clavicle is articulated. This procefs is hollowed at its lowe: part to allow a pafage to the fupra and infra finati mufles. The feap:ia las likewife another confiderable procefs at its upper part, which, fron its refemblance to the beak of a bird, is called the coracoid frocers. From the ou-
ter fide of this coracoid procefs, a ilrong ligament paf- $\underbrace{\text { Ofeology. }}$ fes to the proceffus acromion, which prevents a lux.1tion of the os humeri upwards. A third procefs begins by a narrow neck, and ends in a cavity called glenoid, fur the connection of the os humeri.

The feapula is articulated with. the clavicle and os humeri, to which laft it ferves as a fulcrum ; and by varying its pofition it affords a greater fcope to the bones of the arm in their different motions. It likewife gives origin to feveral mufcies, and pofteriorly ferves as a defence to the trunk.

2. Bones of the Arm.

The arm is conmonly divided into two parts, which are articulated to cach other at the elbow. The upper part retains the nainc of arm, properly fo called, and the lower part is ufually called the fore arm.

The arm is compofed of a fingle bone called os buneri. This bone, which is almoft of a cylindrical fhape, may be divided into its body and its extremities.

The upper extremity begins by a large, round finooth head, which is admitted into the glenoid cavity of the fcapula. On the upper and fore part of the bone there is a groove for lodging the long head of the biccps mufcle of the arm; and on each fide of the groove, at the uppcr end of the bone, there is a tubercle to which the fipinata mufcles are fixcd.

The lower extremity has feveral procefics and cavities. The principal proceffes are its two condyles, one exterior and the other interior, and of thefe the laft is the largeft. Between thefe two we obferve two lateral protuberances, which, together with a middle cavity, form as it were a kind of pilly upon which the motions of the fore-arm are chiefly performed. At each fide of the condyles, as well extcriorly as interiorly , there is another eminence which gives origin to feveral mufcles of the hand and fingers. Pofferiorly and fuperiorly, fpeaking with refpect to the condyles, we obferve a decp foffa which receives a confidcrable procefs of the ulna; and anteriorly and oppofite to this fofla, we obferve another, which is much lefs and receives another procefs of the fame bone.

The body of the bone has at its upper and anterior part a furrow which hegins from behind the head of the bone, and ferves to lodge the tendon of a mufcle. The body of the os humeri is hollow through its whole length, and, like all other long bones, bas its marrow.

This hone is articulated at its upper part to the fcapula. This articulation, which allows motion cvery way, is furrounded by a capfular ligament ; that is fometimes torn in luxation, and becomes an obftacle to the eafy reduction of the bonc. Its lower extremity is articulated with the bones of the fore-arm.

The fore-arm is compofed of of two bones, the ulna and radius.

The nlan or albow arm. humeri, and becomes gradully fmaller than the os 51 and gradually fmaller as it defcends of the ul. to the wrift. At its upper part it has two procerfes na. and two cavities. Of the two procelfes, the largeft, which is fitwated pofteriorly, and called the olecianon, is admitted into the pofterior foffa of the ns humeri. The other procefs is placed antcrionly, and is called the corontid procefs. In bending the arm it enters into the anterior foffa of the os humeri. This proceis
bcing

Part I.

A $\quad \mathrm{N} \quad \mathrm{A} \quad \mathrm{T} \quad \mathrm{O} \quad \mathrm{M} \quad \mathrm{Y}$.

Ontelogy. being inuch finaller than the other, permits the forearm to bend invards; whereas the olecranon, which is flhaped like a hook, reaches the bottom of its foffa in the os humeri as foon as the arm becomes ftraight, and will not permit the fore-arm to be bent backwards. The ligaments likewife oppofe this motion.

Between the two proceffes we have defcribed, there is a contiderable cavity called the fygmoid cavity, divided into two foffr by a finall enuinence, which paffes from one procefs to the other; it is by means of this cavity and the two proceffes, that the ulna is articulated with the os humeri by ginglimus.

At the bottom of the coronoid procefs interiorly, there is a fmall fygmoid cavity, which ferves for the articulation of the ulna with the radius.

The body of the ulna is of a triangular fhape: Its lower extremity terminates by a fmall head and a little ftyloid procels. The ulna is articulated above to the os humeri-both above and below to the radius, and to the wrift at its lower extrennity. All thefe articulations are fecured by means of ligaments. The chief ufe of this bone feems to be to fupport and regulate the motions of the radius. fide of the fore-arm. It is fomewhat larger than the ulna, but not quite fo long as that bone. Its upper part is cylindrical, hollowed fuperiorly to receive the outer condyle of the os humeri. Laterally it is admitted into the little fygmoid cavity of the ulna, and the cylindrical part of the bone turns in this cavity in the motions of pronation and fupination (1). This bone follows the ulna in flexion and extenfion, and may likewife be moved round its axis in any direction. The lower extremity of the radius is much larger and ftronger than its upper part; the ulna, on the contrary, is fnaller and weaker below than above; fo that they ferve to fupply each others deficiencies in both thofe parts.

On the external fide of this bone, we obferve a fmall cavity which is deftined to receive the lower end of the ulna; and its lower extremity is formed into a large cavity, by means of which it is articulated with the bones of the wrift, and on this account it is fometimes called manwbrium manus. It fupports the two firt bones of the wrift on the fide of the thumb, whereas the ulna is articulated with that bone of the wrift which correfponds with the little finger.

Through :he whole length both of this bone and the uina, a ridge is obferved, which affords attachment to an interofeous ligament. This ligament fills up the fpace between the two boncs.

3. Bones of the Hand.

The carpus or wrift confifts of eight fmall boncs of 54 the car- an irregular hape, and difpofed in two unequal rows. pus. Thofe of the upper row are articulated with the bones of the fore-arm, and thofe of the lower one with the metacarpus.

The ancient anatomifts defcribed thefe bones numerically; Lyferus feems to have been the firt who gave
to each of them a particular name. The names se 2 - oreology dopted are founded on the figure of the bones, and are now pretty generally received, except the firft, which inftead of xorunosidss (the name given to it by Lyferus, on account of its finus that admits a part of the os magnum), has by later writers been named Scaphoides or Naviculare. This, which is the outermof of the upper row (confidering the thumb as the outer fide of the hand), is articulated with the radius; on its inner fide it is connected with the os lunare, and below to the trapezium and trapezoilcs. Next to this is a fmaller bone, called the os lunare : becaufe its outer fide, which is connected with the fcaphoides, is thaped like a crefent. This is likewife articulated with the radius. On its in:ner fide it joins the os cuneiforme, and anteriorly, the os magnum and os unciforme.

The os cuneiform, which is the third bone in the upper row, is compared to a wedge, from its being broader above, at the back of the hand, than it is below. Pofteriorly it is articulated with the ulna, and anteriorly with the os unciforme.

Thefe three bones form an oblong articulating furface, covered by cartilage, by which the hand is conneited with the iore-arm.

The os pififorme, or pea-like bone, which is fmalle: than the three juft now defcribed, though generally claffed with the boncs of the upper row, does not properly belong to either feries, being placed on the under furface of the os cunciforme, to as to project into the palm of the hand. The four bones of the fecond row correffond with the bones of the thumb and fingers; the firlt, fecond, and fourth, are from their hhapes named trapezium, trapezoides, and unciforme; the third, from its being the largeft bone of the carpus, is fyled os magnum.

All thefe bones are convex towards the back, and nightity concave towards the palm of the land; their articalating furfaces are covered with cartilages, and fecured by many frong ligaments, particularly by two ligamentous expanfions, called the external and internal annular ligaments of the wrift. The former extends in an oblique direction from the os pififorme to the ftyloid procefs of the radius, and is an inch and an half in breadth ; the latter or internal annular ligament is ftetched from the os pififorme and os unciforme, to the os fcaphoides and trapezium. Thefe annular liganents likewife ferve to bind down the tendons of the wrift and fingers.

The metacarpus confifts of four bones, which fupport the fingers; externally they are a little convex, of 55 and internally fomewhat concave, where they form tacarpus. the palm of the hand. They are hollow, and of a cylindrical flape.

At each extremity they are a little hollowed for their articulation; fuperiorly with the bones of the carpus, and inferiorly with the firft phalanx of the fingers, in the fame manner as the feveral phalanges of the fingers are articulated with each other.

The five fingers of each hand are compofed of fifteen bones, difoofed in threc ranks called phalances: The of ${ }^{56}$ bones of the firlt phalanx, which are articulated with gers.

$$
4 \mathrm{~S}_{2}
$$

the

[^2]
$\begin{array}{lllllll}\mathrm{A} & \mathrm{N} & \mathrm{A} & \mathrm{T} & \mathrm{O} & \mathrm{M} & \mathrm{Y} .\end{array}$

the metacarpus, are the largeft, and thofe of the laft phalanx the finalleft. All thefe bones are larger at their extrenities than in their middle part.

We obferve at the extremities of the bones of the carpus, metacarpus, and fingers, feveral inequalities that ferve for their articulation with each other; and thefe articulations are ftrengthened by means of the ligaments which furround them.

It will be eafily underfood that this multiplicity of bones in the hand (for there are 27 in each hand) is effential to the different motions we wifh to perform. If each finger was compofed only of one bone inftead of threc, it would be impoffible for us to grafp any thing.

§ 2. Of the Lower Extremities.

Each lower extremity is divided into four parts, viz. the os femoris, or thigh bone: the rotula, or kneepan; the leg and the foot.

1. Of the Thigh.

The thigh is compofed only of this bone, whicl1 is the largeft and ftrongeft we have. It will be neceflary to diftinguifh its body and extremities : Its body, which is of a cylindrical thape, is convex before and concave behind, where it ferves to lodge feveral mufcles.

Throughout two-thirds of its length we obferve a ridge called linea afpera, which originatcs from the trochanters, and aftcr running for fome way downwards, divides into two branches, that terminate in the tuberofities at the lower extremity of the honc.

At its upper extremity we muft defcribe the neck and fmooth head of the bone, and likewife two confiderable proceffes: The head, which forms the greater portion of a Splere unequally divided, is turned inwards, and received into the great cotyloid cavity of the os innominatum. At this part of the bone there is a little folfa to be obferved, to which the round ligament is attached, and which we have already defcribed as tending to fecure the head of this bone in the great acetabulum. The neck is almof horizontal, confidered with refpect to its fituation with the body of the bone. Of the two proceffes, the external one, which is the largett, is called trochanter major ; and the other, which is placed on the infide of the bone, trochanter minor. They both afford attachment to mufcles. The articulation of the os femoris with the trunk is ftrengtlicied by means of a capfular ligament, which adheres every where round the edge of the great cotyloid cavity of the os innominatum, and furrounds the head of the bone.

The os femoris moves upon the trunk in every direction.

At the lower extremity of the bone are two proceffes called the condyles, and an intermediate fimooth cavity, by means of which it is articulated with the leg by ginglimus.
All round the under end of the bone there is an irregular furface where the capfular ligament of the joint has its origin, and where blood-vefiels go into the fubfance of the bone.
Between the condyles there is a cavity poferiorly, in which the blood-veffels and ncrves are placed, fecure from the comp:e. Tion to which they wouldotherivife be expofed in the action of bending the leg, and which would not fail to be hertful.

At the fide of each condyle externally, there is a oncology. tuberofity, from whence the lateral liganeents originate, which are extended down to the tilia.

A ligament likewife arifes from each condyle pofteriorly. One of thefe ligaments paffes from the right to the left, and the other from the left to the right, fo that they interfect each other, and for that reafon are called the crofs ligaments.

The lateral ligaments prevent the motion of the leg upon the thigh to the riglt or left ; and the crofs ligaments, which are alfo attached to the tibia, prevent the latter from being brought forwards.

In new-born children all the proceffes of this bone are cartilaginous.

2. The Rotula, or Knee-pan.

The rotula, patella, or knee-pan, as it is differently callcd, is a flat bone about four or five inches in circunn- of the roference, and is placed at the fore-part of the joint of tula. the knee. In its flape it is fomewhat like the common figure of the heart, with its point downwards.

It is thinner at its edge than in its middle part; at its fore-part it is fimooth and fomewhat convex; its pofterior furface, which is more unequal, affords an clevation in the middle which is admitted between the two condyles of the os femoris.

Thisbone is retained in its proper fituation by a ftrong ligament which every where furrounds it, and adheres both to the tibia and os femoris; it is likewife firmly connected with the tibia by means of a ftrong tendinous ligament of an inch in breadth, and upwards of two inches in length, which adheres to the lower part of the patella, and to the tuberofity at the upper end of the tibia. On account of this connection, it is very properly confidered as an appendage to the tibia, which it followsin all its motions, fo as to be to it what the olecranon is to the ulna. There is this difference, however, that the olecranon is a fixed procefs; whereas the patclla is moveable, being capable of fiding from above downwards and from below upwards. This mobility is effential to the rotatory motion of the leg.

In very young children this bone is entirely cartilaginous.

The principal ufe of the patella feems to be to defend the articulation of the knee from external injury ; it likewife tends to increafe the power of the extenfor mufcles of the leg, by removing their dircation farther from the centre of motion in the manner of a pulley.
3. Of the Leg.

The leg is compofed of two bones: Of thefe the inner one, which is the largeft, is called tibia; the other is much fmaller, and named fibula.

The tibia, which is fo called from its refemblance to the mufical pipe of the ancients, has three furfaces, and of the tibia is not very unlike a triangular prifin. Its pofterior furface is the broadeft; antcriorly it has a conliderable ridge called the flin, between which and the finin there arc no mufcles. At the upper extrenity of this bone are two furfaces, a litule concave, and feparated from each other by an an intermediate devation. The two little cavitics receive the condyles of the os femoris, and the eminence between them is admitted into the cavity which we froke of as being between the two condyles; fo that this articulation affords a fecimon of the complete

Ofteology. plete ginglimus. Under the external edge of the upper end of this bone is a circular flat furface, which receives the head of the fibula.

At the lower and inner portion of the tibia, we obferve a confiderable procefs called malleolus intermus. The bafis of the bone terminates in a large tranverfe cavity, by which it is articulated with the uppermoft bone of the foot. It has likewife another cavity at its lower end and onter fide, which is fomewhat oblong, and receives the lower end of the fibnla.
62
Of the fibula.

The tibia is hollow through its whole lengtl.
The fibula is a fmall long bone fitnated on the outfide of the tibia. Its fuperior extremity does not reach quite fo high as the upper part of the tibia, but its lower end defcends fomewhat lower. Both above and below, it is articulated with the tibia hy means of the lateral cavities we noticed in our defcription of that bone.

Its lower extremity is ftretched out into a coronoid procefs, whicl is flattened at its infide, and is convex externally, forming what is called the malleolus extern2:us, or outer ancle. This is rather lower than the malleolus internus of the tibia.

The body of this bone, which is irregularly triangular, is a little hollow at its internal furface, which is turned towards the tibia; and it affords like that bone, through its whole length, attachment to a ligament, which from its lituation is called the interoffeons ligament.

4. Of the Foot.

The foot confints of the tarfus, metatarfus, and toes. Of the tar- The tarfus is compofed of feven bones, viz. the afus.

65 Of the aEtragalus. ftragalus, os calcis, os naviculare, oscuboides, and three others called cuneiform bones.

The aftragalus is a large bone with which both the tibia and fibula are articulated. It is the uppermoft bone of the foot; it has feveral furfaces to be confidered; its upper, and fomewhat pofterior part, which is fmooth and convex, is admitted into the cavity of the tibia. Its lateral parts are conne\&ed with the malleo!i of the two bones of the leg; below, it is articulated with the os calcis, and its anterior furface is received by the os navicularc. All thefe articulations are fecured by means of liganents.

The os calcis, or calcaneum, which is of a very irre-

Of the os

 calcis. gular figure, is the largeft bone of the foot. Behind, it is formed into a confiderable tuberofity called the heel ; without this tuberofity, which fupports us in an erect pofture, and when we walk, we fhould be liable to fall backwards.On the internal furface of this bone, we obferve a confiderable finuofity, which affords a paffage to the tendon of a mufcle : and to the pofterior part of the os calcis, a ftrong tendinous cord called tendo achillis (M) is attached, whicl is formed by the tendons of feveral mufcies united together. The articulation of this with the ather bones is fecured by means of ligaments.
The os naviculare, or fcaphoides, (for thefe two terms have the fame fignification), is fo called on account of its refemblance to a little bark. At its pofterior part, which is concave, it receives the aftragalus; anteriorly
it is articulated with the cuneiform bones, and laterally Ofteology is is conne?ted with the os cuboides.

The os cuboides forms an irregular cube. Pofteri- of the os orly it is articulated with the os calcis; anteriorly it cuboides. fupports the two laft bones of the metatarfus, and laterally it joins the third cuneiform bone and the os naviculare.

69
Each of the offa cuneiformia, whicl are three in of the of number, refembles a wedge, and from this fimilitude cuneifortheir name is derived. They are placed next to the mia. metatarfus by the fides of cach other, and are ufually diftinguighed into os cuneiforme externum, medium or minimum, and internum or maxinnum. The fuperior furface of thefc bones, from their wedge-like fhape, is broader than that which is below, where they help to form the fole of the foot; pofteriorly they are united to the os naviculare, and anteriorly they fupport the three firft metatarfal bones.

When thefe feven bones compofing the tarfus are viewed together in the fkeleton, they appear convex above, where they lielp to form the upper part of the foot ; and concave underneath, where they form the hollow of the foot, in which the veffels, tendons, and nerves of the foot are placed fecure from preffure.

They are united to each other by very ftrong ligaments, and their articulation with the foot is fecured by a capfular and two lateral ligaments ; each of the latter is covercd by an annular ligament of confiderable breadth and thicknefs, whiclı ferves to bind down the tendons of the foot, and at the fame time to ftrengthen the articulation.

The os cunciforme externum is joined laterally to the os cuboides.

Thefe bones complete our account of the tarfus. Thongh what we have faid of this part of the ofteology has been very fimple and concife, yet many readers may not clearly underftand it : but if they will be pleafed to view thefe bones in their proper fituation in the ficleton, all that we have faid of them will be cafily underfood.

The metatarfus is made up of five bones, whereas of the n the metacarpis confifts only of four. The canfe of tatarfus. this difference is, that in the hand the laft bone of the thumb is not included among the metacarpal boncs; whereas in the foot the great toe has only two bones. The firft of thefe bones fupports the great toe and is much larger than the reft, which nearly refemble each other in fize.

Thefe bones are articnlated by one extremity with the cuneiform bones and the os cuboides, and by their other end with the toes.

Each of the toes, like the fingers, confifts of three ofther bones, except the great toe, which is formed of two bones. Thofe of the other four are diftinguifhed into three phalanges. Although the tocs are more confined in their motion than the fingers, yet they appear. to be perfectly fitted for the purpofes they are defigned for. In walking, the toes bring the centre of gravity perpendicular to the advanced foot; and as the foles of the foot are naturally concave, we can at pleafure increafe this concavity, and form a kind of vault, which adjufs itfelf to the different inequalities that oc-
feology. cur to us in walking ; and which, without this mode of arrangement, would incommode us exceedingly, efpecially when bare-fonted.

§ 4. Of the Offa Sesamoidea.

Besides the bones we have already defcribed, there are fereral finall ones that are met with only in the adnit fkeleton, and in perfons who are advanced in life; which, from their fuppofed general refemblance to the feeds of the fefamum, are called offa fefamoidea. They are commonly to be feen at the firft joint of the great toe, and fometimes at the joints of the thumb; they are likewife now and then to be found at the lower extremity of the fibula, upon the condyles of the thigh-bone, under the os cuboides of the tarfus,
and in other parts of the body. Their fize and num- Ofteology ber feem conftanly to be increafed by age and liard labour ; and as they are generally found in fituations wherc tendons and ligaments are moft expofed to the ation of mufles, they are now generally confidered as offified portions of ligaments or tendons.

The upper furface of thefe bones is ufually convex, and adherent to the tendon that covers it; the fide which is next to the joint is fmoeth and flat. Thougl their formation is accidental, yet they feem to be of fome ufe, by raifing the tendons farther from the centre of motion, and confequently increafing the power of the mufcles. In the great toe and thumb they are likewife ufeful, by forming a groove for the flexor terdons.

EXPLANATION of the PLATES of OSTEOLOGY.

Plate XIX.

Fig. I. A Front-view of the Male Skeleton. A, The os frontis. B, The os parietale. C, The coronal future. D, The fquamous part of the temporal bones. E , The fqumous future. F , The zygoma. G, The maftoid procefs. H, The temporal procefs of the fphenoid bone. I, The orbit. K, The os malæ. L, The os maxillare fuperius. M, Its nafal procefs. N, The offa nafi. O, The os unguis. P, The maxilla inferior. Q, The tecth, which are fixteen in number in each jaw. R, The feven cervical vertebræ, with their intermediate cartilages. S, Their tranverfe procefles. T, The twelve dorfal vertebrx, with their intermediate cartilages. U, The five lumbar vertebræ. V, Their tranverfe proceffes. W, The upper part of the os facrum. X, Its lateral parts. The holes fcen on its fore part are the paffages of the undermof fpinal nerves and finall veffels. Oppofite to the holes, the marks of the original divifions of the bone are feen. Y, The os ilium. Z, Its creft or fpine. a, The anterior fpinous proceffes. b, The brim of the pelvis. c, The ifchiatic niche. d, The os ifchium. e, Its tuberofity. f, Its fpinous procefs. g, Its crus. h, The foramen thyroidemm. i, The os pubis. k, The fymphyfis pubis. 1 , The crus pubis. m, The acetabulum. 11, The feventh or laft true rib. o, The twelfth or laft falife rib. p, The upper end of the fternum. q, The middle pioce. r, The under end, or cartilage enfiformis. s, The clavicle. t, The internal furface of the fcapula. u, Its acromion. v, Its coracoid procefs. w, Its cervix. x, The glenoid cavity. y, The os humeri. z, Its head, which is connected to the glenoid cavity. I, Its external tubercle. 2, Its internal tubercle. 3, The groove for lodging the long head of the biceps mufcle of the arm. 4, The internal condyle. 5, The external condyle. Between 4 and 5, the trochlea. 6, The radius. 7, Its head. 8, Its tubercle. 9, The ulna. 10 , Its coronoid procefs. $11,12,13,14,15,16,17,18$, The carpus; compofed of os naviculare, os lunare, os cuneiforme, os pififorme, os trapezium, os trapezoides, os magnum, os unciforme. 19, The five bones of the metacarpus. 20, The two bones of the thumb. 21, The three bones of each of the fingers. 22, The os femoris. 23, Its head. 24, Its cervix. 25, The trochanter major. 25, The trochanter minor. 27, The inter-
nal condyle. 28, The external condyle. 29, The rotula. 30, The tibia. 31, Its head. 32, Its tu. bercle. 33, Its frine. 34, The malleolus internus. 35, The fibula. 36, Its head. 37, The malleolus externus. The tarfus is compofed of, 38 , The aftragalus; 39, The os calcis ; 40, The os naviculare; 41, Three offa cunciformia, and the os cuboides, which is not feen in this figure. 42 , The five bones of the metatarfus. 43, The two bones of the great toe. 44, The three bones of each of the fmall toes.

Fig. 2. A Front-view of the Skule.
A, The os frontis. B, The lateral part of the os frontis, which gives origin to part of the temporal mufcle. C, The fuperciliary ridge. D, The fuperciliary hole through which the frontal veffels and nerves pals. EE, The orbitar proccfies. F, The middle of the tranfverfe future, G, The upper part of the orbit. H, The foramen opticum. I, The foramen lacerum. K, The inferior orbitar fiffure. L, The os unguis. M, The offanafi. N, The os maxillare fuperius. O, Its nafal procefs. P, The external orbitar hole through which the fuperior maxillary veffels and nerves pals. Q, The os malæ. K, A paffage for fmall veffels into, or out of, the orbit. S, The under part of the left noftril. T, The feptum narium. U , The os fpoigiofum fuperius. V , The os fongiofum inferius. W, The edge of the alveoli, or fpongy fockets, for the teeth. X, The maxilla inferior. \mathbf{Y}, The paffage for the inferiormaxillary veffels and nerves.

Fic. 3. A Side-view of the Skuil.
A, The os frontis. B, The coronal future. C, The os parietalc. D, An arched ridre which gives origin to the temporal mufclc. E, The fquamous future. F, The fquamous part of the temporal bone ; and, farther forwards, the temporal procefs of the fphenoid bone. G, The zygomatic procefs of the temporal bone. H, The zygomatic future. I, The mafoid procefs of the temporal bone. K, The meatus auditorius externus. L, The orbitar plate of the frontal bone, under which is feen the tranverfe future. M, The pars plana of the ethroid bone. N, The os unguis. O, The right os nafi. P, The fliperior maxillary bone. Q, Its nafal procefs. R, The two dentes incifores. S, The dens caninus. T, The two fmall molares, U, The three large molares. V, The os malx. W, The lower jaw. X, Its angle. Y, The

いいないが

$\underbrace{\text { Ofteology. coronoid procefs. } \mathrm{Z} \text {, The condyloid procefs, by which }}$ the jaw is articulated with the temporal bone.
Ftg. 4. The pofterior and right Side of the Skule. A, The os frontis. B B, The offa parietalia. C, The fagittal futurc. D, The parietal hole, through which a fimall vein runs to the fuperior longitudinal finus. E, The lambdoid future. FF, Offa triquetra. G, The os occipitis. H, The fquamous part of the temporal bone. I, The maftoid procefs. K, The zygoma. L, The os malx. M, The temporal part of the fphenoid bone. N, The fuperior maxillary bone and teeth.
Fic. 5. The external Surface of the Os Frontis.
A, The convex part. B, Part of the temporal foffa. C, The external angular procefs. D , The internal angular procefs. E, The nafal procefs. F, The fuperciliary arch. G, The fuperciliary hole. H, The orbitar plate.
Fig. 6. The Interior Surface of the Os Frontis.
A A, The ferrated edge which affifts to form the coronal future. B , The external angular proccls. C , The internal angular procefs. D , The nafal procefs. E, The orbitar plate. F, The cells which correfpond with thofe of the ethmoid bone. G, The paffage from the frontal fimus. H, The opening which receives the cribriform plate of the ethmoid bone. I, The cavity which lodges the fore part of the brain. K , The fine to whicl the falx is fixed. L, The groove which lodges the fuperior longitudinal finus.
PLATEXX.

Fig. I. A Back-view of the Skeleton. A A, The offa parietalia. B, The fagittal future. C, The lambdoid future. D, The occipital bone. E , The fquamous future. F , The maftoid procefs of the temporal bone. G, The os malx. H, The palate plates of the fuperior maxillary bones. I, The maxilla inferior. K, The teeth of both jaws. L, The feven cervical vertebre. M, Their finous proceffes. N , Their tranfverfe and oblique proceffes. O , The laft of the twelve dorfal vertebre. P, The fifth or laft lumbar vertebra. Ω, The tranfverfe proceffes. R , The oblique proceffes. S, The finous proceffes. T, The upper part of the os facrum. U, The pofterior holes which tranfmit fmall blood-veffels and nerves. V, The nnder part of the os facrum which is covered by a membrane. W, The os coccygis. X , The os ilium. \mathbf{Y}, Its fpine or creft. Z, The ifchiatic niche. a, The os ifchium. b, Its tuberofity. c, Its fpine. d, The os pubis. e, The foramen hydroideum. f, The feventh or laft true rib. g , The twelfth or laft falfe rib. h, The clavicle. i, the fcapula. k, Its fpine. 1, Its acromion. m , Its cervix. n , Its fuperior cofta. o , Its pofterior cofta. p, Its inferior cofta. q, The os humeri. r. The radius. s, The ulna. t, Its oleclarnon. u , All the bones of the carpus, excepting the os pififorme, which is feen in Plate XIX.'fig. I. v, The five bones of the matacarpas. w, The two bones of the thumb. x, The three bones of each of the fingers. y, The two fefamoid boncs at the root of the left thumb. z, The os femoris. I, The trochanter major. 2, The trochanter minor. 3, The linea afpera. 4, The internal condyle. 5, The cxternal
condylc. 66, The fimilunar cartilages. 7, The ti- $\underbrace{\text { Onteology. }}$ bia. 8, The malleolus internus. 9, The fibula. 10, The mallelous externas. II. The tarfus. 12, The metatarfus. 13, The toes.
Fig. 2. The External Surface of the Left Os PA rietale.
A, The convex finooth furface. B, The parietal hole. C, An arch made by the beginning of the temporal muffle.
Fig. 3. The Internal Surface of the fame bone.
A, Its fupcrior edge, which, joined with the other, forms the fagittal future. B, The anterior edge, which affifts in the formation of the coronal future. C , The inferior edge for the fquamons finture. D, The pofterior edge for the lambdoid fiture. E, A depreflion made by the lateral finus. FF, The prints of the arteries of the dura mater.
Fig. 4. The External Snrface of the Left Os TemPORUM.
A, The fquamous part. B, The maftoid procefs. C, The zygomatic procefs. D, The fyloid procefs. E, The petrofal procefs. F, The meatus anditorins externus. G, The glenoid cavity for the articulation of the lower jaw. H, The foramen ftylo-manoideum for the portio dura of the feventh pair of nerves. I, Paffages for blood-veffels into the bone. K, The foramen maftoideum through which a vein goes to the lateral finus.
Fig. 5. The Internal Surface of the Left Os TemPORUM.
A, The fquamons part; the upper edge of which affifts in forming the fquamous future. B, The maftoid procefs. C, The flyloid procefs. D, The pars petrofa. E, The entry of the feventh pair, or anditory nerve. F , The fofla, which lodges a part of the lateral finus. G, The foramen matoidenm.
Fig.6. The External Surface of the Osseou Circie, which terminates the meatus anditorious externns.
A, The anterior part. B, A finall part of the groove in which the membrana tympani is fixed.
N. B. This, with the fubfequent bones of the ear, are here delineated as large as the life.
Fig. 7. The Internal Surface of the Osseou s Circie.
A, The anterior part. B, The groove in which the membrana tympani is fixcd.
Fig. 8. The Situation and Connection of the Small Bones of the Ear.
A, The mallens. B, The incus. C, The os orbiculare. D, The flapes.
Fig. 9. The Malleus, with its Head, Handle, and Small Proceffes.
Fic. ro. The Incus, with its Body, Superior and Inferior Branches.
Fig.if. The Os Orbiculare.
Fic. 12. The Stapes, with its Iead, Bafe, and two Crura.
Fig. is. An Internal View of the Labyrinta of the Ear.
A, The hollow part of the cochlea, whieh forms a bulum. C C C, The femicircular canals.

Fig. i4. An Extcrnal View of the Labyrinth. A, the femicircular canals. B, The feneftra ovalis which leads into the veftibulum. C, The feneftra rotunda which opens into the cuchlea. D, The different tums of the cochlea.

Fig. 15. The Internal Surface of the Os Sphenoides.
A A, The temporal procefles. B B, The pterygoid procefies. C C, The fpinous proceffes. D D, The anterior clinoid proceffes. E. The poftcrior clinoid procefs. F, The anterior procefs which joins the ethnoid bone. G, The fella turcica for lodging the glandula pituitaria. H , The foramen opticum. K, The foramen lacerum. L, The foramen rotundum. M, The foramen ovale. N, The foramen fpinale.
Fig. 16. The External Surface of the Os Sphenoides. A A, The temporal proceffes. B B, The pterygoid proceffes. C C, The fpinous procefies. D, The proceffus azygos. E, The fimall triangular proceffes which grow from the body of the bone. F F, The orifices of the fphenoidal finufes. G, The foramen lacernm. H, The foramen rotundum. I, The foramen ovale. K, The foramen pterygoideum.

Fig. r7. The External View of the Os Ethmoides. A, The nafal lamella. B B, The grooves between the nafal lamella and offa fpongiofa fuperiora. C C, The offa fpongiofa fuperiora. D D, The fphenoidal cornua. See Fig. I6. E.
Fig. r8. The Internal View of the Os Ethmoides.
A, The crifta galli. B, The cribriform plate, with the different paffages of the olfactory nerves. C C, Some of the ethmoidal cells. D, The right os planum. E E, The fphenoidal cornua.
Fig. ig. The right Sphenoidal Cornu.
Fig. 20. The left Sphenoidal Cornu.
Fic. 2I. The External Surface of the Os Occiritis.
A, The upper part of the bone. B, The fuperior arched ridge. C, The inferior arched ridge. Under the arches are prints made by the mufcles of the neck. D D, The two condyloid proceffes which articulate the head with the fpinc. E, The cuneiform procefs. F, The foramen magnum through which the fpinal marrow paffes. G G, The pofterior condyloid foramina which tranfmit veins into the lateral finufes. H H, The foramina lingualia for the paffage of the nine pair of nerves.

Fig. 22. The internal Surface of the Os Occipitis.
A A, The two fides which affift to form the lambdoid future. B, The point of the cunciform procefs, where it joins the fphenoid bone. C C, The prints made by the pofterior lobes of the brain. D D, Prints made by the lobes of the cerebellum. E, The cruciform ridge for the attachment of the proceffes of the dura mater. F, The courfe of the fuperior longitudinal finufes. G G, The courfe of the two lateral finufes. H, The foramen magnum. I I, The pofterior condyloid foramina.

Plate XXI.
Fig. r. A Side-view of the Skeieton.
A A, The offa parietalia. B, The fagittal future. C, The os occipitis. D D, The lambdoid future. E, The fquamous part of the temporal bone. F, The maftoid procefs. G, Thie incatus auditorius externus. H, The os frontis. I, The os malæ. K, The os maxillare fuperius. L, The maxilla inferior. M, The teeth of both jasvs. N, The feventh, or laft cervical vertebra. O, The fpinous proceffes. P, Their tranfverfo and oblique proceffes. Q, The twelfth or laft dorfal vertebra. R, The fifth, or laft lumbar vertcbra. S, The fpinous proceffes. T, Openings hetween the vertebre for the paffage of the fpinal nerves. U , The under end of the os facrum. V, The os coccygis. W , The os ilium. X , The anterior finous proceffes. Y, The pofterior fpinous proceffes. Z, The ifchiatic niche. a, The right os iliunn. b, The offa pubis. c, The tuberofity of the left os ifchium. d, The fcapula. e, Its fpine. f, The os humeri. g, The radius. h, The ulna. i, The carpus. k, The metacarpal bone of the thumb. 1, The metacarpal bones of the fingers. m, The two bones of the thumb. n, The three bones of each of the fingers. o, The os femoris. p, Its head. q, The trochanter major. r, The exterual condyle. s, The rotula. t, The tibia, u, The fibula. v, The malleolus externus. w, The aftragalus. x, The os calcis. y, The os naviculare, z, The three offa cunciformia. I, The os cuboides. 2, The five metatarfal boncs. 3, The two bones of the great toe. 4, The three bones of each of the fmall toes.
Fig. 2. A Vicw of the Internal Surface of the Bafe of the Skule.
A A A, The two tables of the fkull with the diplöc. B B, The orbitar plates of the froutal bone. C, The crifta galli, with cribriform plate of the ethmoidal bone on each fide of it, through which the firft pair of nerves pafs. D, The cuneiform proceis of the occipital bone. E, The cruciform ridge. F, The foramen magnum for the paffage of the fpinal marrow. G, The zygroma, made by the joining of the zygomatic procefles of the os temporum and os malæ. H , The pars fquamofa of the os temporum. I, The pars mammillaris. K, The pars petrofa. L, The temporal procefs of the fphenoid bone. M M, The anterior clinoid proceffes. N, The pofterior clinoid procefs. O, The fella turcica. P, The foramen opticum, for the paffage of the optic nerve and ocular artery of the left fide. 2, The foramen lacerum, for the third, fourth, fixth, and firft of the fifth pair of nerves and ocular vein. h, The foramen rotundum, for the fecond of the fiftli pair. S, The foramen ovale, for the third of the fifth pair. T, The foramen fpinale, for the principal artery of the dura mater. U , The entry of the auditory nervc. V, The paffage for the lateral finus. W, The paffage of the eighth pair of nerves. X, The paffage of the ninth pair.
Fig. 3. A View of the External Surface of the Bafe of the Skule.
A, The two dentes incifores of the right fide. B, The dens caninus. C, The two fimall molares. D, The three large molares. E, The foramen incifisum, which gives paflage to fmall blood-veffels and nerves. F', The
InATovi

- Yig.

Phate XXI Tince Fing.n

TYig. $/ 8$

Part I. A N A T O M Y.

Ofteology. palate-plates of the offa maxillaria and palati, joined by the longitudinal and traniverfe palate futures. G, The foramen palatinum poftcrins, for the palatine veffels and nerves. H , The os maxillare fuperius of the right fide. I, The os malæ. K, The zygomatic procefs of the temporal bone. L. The pofterior extremity of the offa fpongiofa. M, The pofterior extremity of the vomer, which forms the back-part of the feptum nafi. N, The pterygoid procefs of the right fide of the fphenoid bone. O O, The foramina ovalia. PP, The foramina fpinalia. QQ, The paffages of the internal carotid artcries. R, A hole between the point of each pars petrofa and cuneiform procefs of the occipital bone, which is filled up with a liganentous fubftance in the recent fubject. S, The pallage of the Ieft lateral finus. T, The pofterior condyloid foramen of the left fide. U, The foramen maftoidenm. V , The foramen magnum. W, The inferior orbitar fiffure. X, The glenoid cavity, for the articulation of the lower jaw. Y, The fquamous part of the temporal bone. Z, The maftoid procefs, at the inner fide of which is a foffa for the pofterior belly of the digaftric mufcle. a, The ftyloid procefs. b, The meatus auditorius externus. c, The left condyle of the occipital bone. d, The perpendicular occipital fpine. ee, The inferior horizontal ridge of the occipital bone. ff , The fuperior horizontal ridge, which is oppofite to the crucial ridge where the longitudinal finus divides to form the lateral finufes. ggg , The lambdoid futnre. h, The left fquamous future. i, The parietal bone.

Fig. 4. The anterior furface of the Ossa Nasi. A, The upper part, which joins the os frontis. B, The under end, which joins the cartilage of the nofe. C, The inner edge, where they join each other.

Fig. 5. The pofterior furface of the Ossa Nasi.
A A, Their cavity, which forms part of the arch of the nofe. B B, Their ridge or fpine, which projects 2 little to be fixed to the fore-part of the feptum narium.
Fig. 6. The external furface of the Os Maxiliare Superius of the left fide.
A, The nafal procefs. B, The orbitar plate. C, The unequal furface which joins the os malæ. D , The external orbitar hole. E, The opening into the noftril. F, The palate-plate. G, The maxillary tubcrofity. H, part of the os palati. I, The two dentes incifores. K , The dens caninus. L, The two fmall dentes molares. M, The threc large dentes molares.
Fig. 7. The irternal furface of the Os Maxillare Superius and Os Palati.
A, The nafal procefs. B B, Eminences for the connection of the os fpongiofum inferius. D, The under end of the lachrymal groove. E, The antrum maxillare. F , The nafal fpine, berween which and B is the cavity of the noftril. G, The palate-plate. H, The orbitar part of the os palati. I, The nafal plate. K, The futurc which unites the maxillary and palate bones. I, The pterygoid procefs of the palate bones.
Fig. 8. The external furface of the right Os Unguis.
A, The orbitar part. B, The lachrymal part. C,
The ridge between them.

Fig. 9. The internal furface of the right Os UNGUis. $\underbrace{\text { Ofteology. }}$
This fide of the bone has a furrow oppofite to the external ridge ; all behind that is irregular, where it covers part of the ethmoidal cells.

Fig. io. The external furface of the left Os Male.
A, The fuperior orbitar procefs. B, The inferior orbitar procefs. C, The malar procefs. D, The zygomatic procefs. E, The orbitar plate. F, A paffage for fmall veffels into or out of the erbit.

Fig.ir. The internal furface of the left Os Male.
A, The fuperior orbitar procefs. B, The inferior orbitar procefs. C, The malar procefs. D, The zygomatic procefs. E, The internal orbitar plate or pracefs.
Fig. 12. The external furface of the right Os Spongiosum Inferius.
A, The anterior part. B, The hook-like procefs for covering part of the antrum maxillarc. C, A fmall procefs which covers part of the under end of the lachrymal groove. D, Theinferior edge turned 2 little outwards.
Fig. 13. The internal furface of the Os Spongiosum Inferius.
A, The anterior extremity. B, The upper edge which joins the fuperior maxillary and palate bones.

Fig. 14. The pofterior and external furface of the right Os Palati.
A, The orbitar procefs. B, The nafal lamella. C, The pterygoid procefs. D, The palate procefs.
Fig. 15. The anterior and external furface of the right Os Palati.
A, The orbitar procefs. B, An opening throngh which the lateral nafal veffels and nerves pafs. C, The nafal lamella. D, The pterygoid procef's. E, The pofterior edge of the palate procefs for the connection of the velun palati. F, The inner edge by which the two offa palati are connected.

Fig. 16. The right fide of the Vomer.
A, The upper edge which joins the nafal lamella of the ethmoid bone and the middle cartilage of the nofe. B, The inferior edge, which is conneited to the fuperior maxillary and palate bones. C, The fuperior and pofterior part whiclı rcceives the proceflus azygos of the fphenoid bone.

Fig. 17. The Maxilea Inferior.
A, The chin. B, The bafe and left fide. C, The angle. D, The coronoid procefs. E, The condyloid procefs. F, The beginning of the inferior maxillary canal of the right fide, for the entry of the nerve and blood-veffels. G, The termination of the left canal. H , The two dentes incifores. I, The dens caninus. K, The two fimall molares. L, The three large molares.

Fig. 18. The differcht claffes of the Teeth.
I, 2, A fore and back view of the two antcrior dentes incifores of the lower jaw. 3, 4, Similar teeth of the neper jaw. 5, 6, A fore and back view of the dentes canini. 7,8 , The anterior deutcs molarcs. 9 , 10 If, The pofterior dentes molares. 12, 13, I4, 4 T

Ofeology. 15, 16, Unufual appearances in the flape and fize of the teeth.
Fig. 19. The external furface of the Os Hyoides.
A, The body. B B, The comua. CC, The appendices.

Prate XXII.

Fig. i. A Pofterior View of the Sternum and Clavicles, with the ligament connecting the clavicles to each other.
a , The pofterior furface of the fternum. bb , The broken ends of the clavicles. c c cc, The tubercles near the extremity of each clavicle. d, The ligament connecting the clavicles.
Fig. 2. A Fore-view of the Left Scapula, and of a half of the Clavicle, with their Ligaments. a, The fpine of the fcapula. b, The acromion. c, The inferior anglc. d, Inferior cofta. e, Cervix. f, Glenoid cavity, covered with cartilage for the armbone. gg , The capfular ligament of the joint. h, Coracoid procefs. i, The broken end of the clavicle. k , Its extremity joined to the acromion. 1, A ligament coming out fingle from the acromion to the coracoid procefs. $\mathrm{m}, ~ A$ ligament coming out fingle from the acromion, and dividing into two, which are fixed to the coracoid procefs.
Fig. 3. The Joint of the Elbow of the Left Arm, with the Ligaments.
a, The os lumeri. b, Its internal condyle. c c, The two prominent parts of its trochlea appearing through the capfular ligament. d, The ulna. e, The radins, f, The part of the ligamen tincluding the head of the radius.
Fig. 4. The Bones of the Right-Hand, with the Palm in view.
a, The radius. b, The ulna. c, The fcaphoid bone of the carpus. d, The os lunare. e, The os canciforme. f, The os pififorme. g, Trapezium. h, Tiapezoides. i, Capitatum. k, Unciforme. 1. The four metacarpal bones of the fingers. m, The firf phalanx. n , The fecond phalanx. o, The third phalanx. p , The metacarpal bone of the thumb. q , The firf joint. r, The fecond joint.
Fric. 5. The Pofterior View of the Bones of the Left Hand.
The explication of Fig. 4. ferves for this figure; the fane letters pointing out the fame bones, though in 2 different view.
Fig. 6 . The Upper Extremity of the Tibia, with the Semilunar Cartilages of the Joint of the Knee, and fome Ligaments.
a, The frong ligament which conneets the rotula to the tubercle of the tibia. bb, The parts of the extiemity of the tibia, corcred with cartilage, which appear within the femilunar cartilages. cc , The femilunar cartilages. d, The two parts of what is called the crofs ligament.
Fic. 7. The Pofterior Vicw of the Joint of the Riceit Knee.
a, The os femoris cat. b, Its internal condyle. c, Its exteral coindyle. d, The back-part of the tibia.
e, The fuperior cxiremity of the fibula. f, The cdge Oftcology; of the internal femiluner cartilage, g, An obliquc ligament. $h_{\text {, A }}$ A larger perpendicular ligament. i, A ligament connecting the fenur and fibula.

Fig. 8. The Anterio: View of the Joint of the Right Knee.
 b , The internal condyle. c, Its extcrinal condylc.

 d, The part of the os femoris, on which the patella moves. e, A perpendicular ligament. If, The two parts of the crucial ligaments. g g, The edges of the two moveable femilunar cartitarces. h, The tibia. i, The ftrong ligament of the patella. k, The back part of it where the fat has becen diffected away. 1, The external deprefion. m, The internal one. n, The cut tibia.Fic. 9. A View of the inferior part of the Bones of the Right Foot.
a, The great knob of the os calcis. b, A prominence on its outfide. c, The hollow for the tendons, nerves, and blood-veffels. d, The anterior extremity of the os calcis. e, Part of the aftragalus. f, Its head covered with cartilage. g, The internal prominence of the os naviculare. h, The os cuboides. i, The os cuneiforme internum ; k,-Mcdium; 1,Externun. m, The inetatarfal bones of ihe four leffer toes. n, The firf- o, The fecond- p, The third phalanx of the four leffer toes. q, The metatarfal bones of the great toe. r, Its fir $\mathrm{A}-\mathrm{s}$, Its fecond joint.
Fic. ro. The Inferior Surface of the two large Sesa-
moid Bones, at the firft Joint of the Great Toe.
Fig. Ir. The Superior View of the Bones of the Right「оот.
a, b, as in Fig. 9. c, The fuperior head of the aftragalus. d, trc. as in Fig. 9.
Fig. 12. The View of the Sole of the Foot, with its Ligaments.
a, The great knob of the os calcis. b, The hollow for the tendons, nerves, and blood-veffels. c, The fheaths of the flexores pollicis and digitorum longi opened. d, The frong cartilaginous ligament fupporting the head of the aftragalus. e, h, Two ligainents which unitc into one, and are fixed to the metatarfal bone of the great toe. f, A ligament from the knob of the os calcis to the metatarfal bone of the little toe. g, A ftrong triangular ligament, which fupports the bones of the tarfus. j, The ligaments of the joints of the five metatarfal bones.

Fig. 13. a, The head of the thigh bone of a child. b , The ligamentum rotundum cornesting it to the acetabulum, c, The capfular ligament of the joint with its arteries injectcd. d, The numerous veffels of the mucilaginous gland injected.
Fig. 14. The Back-vicw of the Cartilages of the Larynx, with the Os Hyordes.
a, The pofterior gart of the bare of the os hyoides. $b \mathrm{~b}$, Its cornta. c , The appendix of the right fide. d , A ligament fent out from the appendix of the left fide, to the fyloid procels of the temporal bone. e, The union of the bife with the left cornu. if, The pofecifor fides of (g) the thyroid cartilage. Ih h, Its

Oneology. fuperior cornala. ii, Its inferior corma. k , The cif- FıC. 15. The Superior Concave furface of the SESA- Ofteology. coid cartilage. 11, The arytenoid cartilagcs. m, The entry into the lungs, named glottis. n, The epiglottis. 00 , The fuperior cartilages of the trachea. P, Its ligamentous back part. mord Bones at thic firf joint of the Great Toe, with their Ligaments.
a, Three fefamoid bones. b, The ligamentous fubflance in which they are formed.

Part II. Or the SOFt PaRTS in General; Oe the COMMON INTEGUMENTS, with their Appendages;

And of the M USCLES,

ANATOMICAL writers ufualiy proceed to a dcfcription of the mufcles after having finifhed the ofteology; but we flall deviate a little from the common method, with a view to dcferibe every thing clearly and diftinctly, and to avoid a tautology which would otherwife be unavoidable. All the parts of the body are fo intimately conneeted with each other, that it fecms impoffible to convey a juft idea of any one of then, without being in fome meafure obliged to fay fomething of others; and on this account we wifl to mention in this place the names and fituation of the principal vifccra of the body, that when inention is hereafter made of any one of themin the courfe of the work, the reader may at leaft know where they are placed.

After this little digrefiion, the commoninteguments, and after them the nufcles will be defcribed; we then propofe to enter into an examination of the feveral vifcera and their different funstions. In deferibing the brain, occafion will be taken to feeak of the nerves and animal firits. The circulation of the blood will follow the anatomy of the heart, and the fecretions and other matters will se introduced in their proper places.
The body is divided into threc great cavities. Of thefe the uppermoft is formed by the bones of the cranium, and inclofes the brain and cerebcllum.
The fecond is compoled of the vertebre of the back, the ficrnum, and true ribs, with the additional affiftance of mufcles, membranes, and common integuments, and is called the thorax-It contains the heart and lungs.

The third, and inferior cavity, is the abdomen. It is feparated from the thorax by means of the diaphragm, and is formed by the lumbar vertebre, the os facrum, the offa innominata, and the falfe ribs, to which we may add the peritonæum, and a variety of mufcles. This cavity inclofes the fomach, inteftines, omentum or cawl, liver, pancreas, fpleen, kidncys, urinary bladder, and parts of generation.

Under the divifion of common integuments are ufually included the epidermis, or fcarf-1kin, the reticulum mucofum of Malpighi, the cutis or true fkin, and the membrana adipofa.-The hair and nails, as well as the fehaceous glands may be confidered as appendages to the fkin.

> Sect. I. Of the Skin.
> ir. Of the Scarf-/Rin.
t4 The cpidcrmis, cutticula, or fcarf-fin, is a finc, Cuticula. $\operatorname{trinf} \int_{i}$ rent, and infenfible pollicle, deftitute of nerves and blond-veldels, which invelts the body, and cvery-
where covers the truc fikin. This fcarf-fkin, which feems to be very fimple, appears, when examined with a microfcope, to be compofed of feveral laminæ or fcalcs which are increafed by preffure, as we may obferve in the hands and fect, where it is frequently much thickened, and bccomes perfectly callous. It feems to adhere to the cutis by a number of very minute filaments, but may eafily be feparated from it by heat, or by maceration in water. Some a natomical writers have fuppofed that it is formed by a moifure exhalcd from the whole furface of the body, which gradually hardens when it comes into contast with the air. They were perhaps induced to adopt this orinion, by olferving the ffcedy regeneration of this part of the body when it has been by ally means deftroyed, it appearing to be rencwed on ali parts of the furfacc at the fame time; whereas other parts which have been injured, are found to direct their growth from their circimfercnce only towards their centre. But a demonftrative proof that the epidernis is not a fluid hardericd by means of the external air, is that the foetus in utero is found to have this covering. Lieuwenhoeck fuppofed its formation to be owing to the expanfion of the extremities of the excretory veffels which are found everywhere upon the furface of the trae fkin. Ruyfch attributed its origin to the nervous papillo of the fkin; and Heifter thinks it probable, that it may be owing both to the papillæ and the excretory veffcls. The celebrated Morgagni, on the other hand, contends*, that it is nothing more than the fur- * Adverfar. face of the cutis, hardened and rendered infenfible by Anat. Ir. the liquor amnii in utero, and by the preffure of the Animadair. This is a fubject, however, oll which we can ad- ver. 2. vance nothing with certainty.

The cuticle is picrced with an infinite number of porcs or little holes, which afford a pafiage to the hairs, fiveat, and infenfible perfpiration, and likewife to warm water, mercury, and whatever clfe is capable of being taken in by the abforbents of the fkin. The lines which we obferve on the epidermis belong to the true fkin. The cuticle adjufts itfelf to them, but does not form them.

§2. Of the Rete Mucofum.

Between the epidermis and cutis we meet with an 75 appcarance to which Malpighi, who firft defcribed Rete muit, gave the name of rete nulucof fun, fuppofing it to be cofum. of a membranons fructurc, and pierced with an infinite number of pores; but the fact is, that it feems to be nothing more than a mucous fubfance which may be difflyed by maccrating it in water, while the cuticle and cutis proferve their texture.

The colour of the body is fonnd to depend on the colour of this rete mucofum; for in megroes it is obferved to be perfectly black, whilft the true fkin is of the ordinary colour.

The blifters which raife the fkin when burnt or fealded, have been fuppofed by fome to be owing to a rarefation of this mucus; but they are more probably occafioned by an increafed action of the veffels of the part, together with an affux and effufion of the thinner parts of the blood.

> §3. Of the CuTis, or True Skin.

The cutis is compofed of fibres clofely compacted together, as we may obferve in leather, which is the prepared fkin of animals. Thefe fibres form a thick network, which everywhere admits the filaments of nerves, and an infinite number of blood-veffels and lymphatics.

The cutis, when the epidermis is taken off, is found to have, throughout its whole furface, innumerable papillæ, which appear like very minute granulations, and feem to be calculated to reccive the impreffions of the rouch, being the moft eafily obferved where the fenfe of fecling is the moft delicate, as in the palms of the hands and on the fingers.

Thefe papillæ arc fuppofed by many anatomical wrirers to be continuations of the pulpy fubftance of nerves, whofe coats have terminated in the cellular texture of the fkin. The great fenfibility of thefc papillæ evidently proves them to be exceedingly nervous; bitt furely the nervous fibrillæ of the 1 kin are of themfelves fcarcely equal to the formation of thefe papillæ, and it feems to be more probable that they are formed like the reft of the cutis.

Thefe papillæ being defcribed, the ufes of the epiThe febaseous glands.
pighi, Rayfle, Verlacyen, Winflow, and others, who of the Inhave adopted his opinions on this fubject, fjpak of thein teguments, as liaving excretory ducts, that open on the furface of \&c the cuticle, and diftil the fweat and maticr of infenfible perffiration; and yct, notwithfanding the pofitive manner in which thefe pretended glands have been fpoken of, we are now fufficiently convinced that their exiftence is altogether imaginary.

§5. Of the Insensible Perfpiration and Sweat.

The matter of infenfible perfpiration, or in other words, the fubtile vapour that is continually exhaling Infenfible from the furface of the body, is not fecreted by any perfpiraparticular glands, but feems to be derived wholly from the extremities of the minute arterits that are everywhere difperfed throngh the fkin. Thefe exhaling veffels are eafily demonftrated in the dead fubject, by throwing water into the arteries; for then fmall drops exude from all parts of the fkin , and raife up the cuticle, the pores of which are clofed by death; and in the living fubject, a looking-glafs placed againft the fkin, is foon obfcured by the vapour. Bidloo fancied he had difcovered ducts leading from the cutis to the cuticle, and tranfmitting this fluid; but in this he vas miftaken.

When the perfpiration is by any means increafed, and feveral drops that were infenfible when feparate, are united together and condenfed by the external air, they form upon the 1 kin fmall, but vifible, drops called fweat (N). This particularly happens after much cxercife, or whatever occafions an increafed determination of fluids to the furface of the body; a greater quantity of perfpirable matter being in fuch cafes carried through the paffages that are deftined to convey it off.
an Jtalian phyfician, who indcfatigably paffed a great many
dermis and the reticulum mucofum will be more eafily underftood; the latter ferving to keep them conftantly moift, while the former protects them from the external air, and modifies their too great fenfibility.

§4. Of the Glands of the Skin.

In different parts of the body we neeet, within the
It has been difputed, indeed, whether the infenfible perfpiration and fweat are to be confidered as one and the fame excretion, differing only in degree ; or whether they are two diftinct excretions derived from different fources. In fupport of the latter opinion, it has been alledged, that the infenfible perfpiration is agreeable to nature, and effential to health, whereas fiveat may be confidered as a fpecies of difeafe. But this argunient proves nothing; and it fecms probable, that both the infenfible vapour and the fweat are exhaled in a fimilar manner, though they differ in quantity, and probably in their qualities; the former being more limpid, and feemingly lefsimpregnated with falts than the latter: at any rate we may confider the kin as an cmunctory through which the redundant water, and fometimes the other more faline parts of the blood, are carried off. But the infenfible perfpiration is not confined to the fkin only-a great part of what we are conftantly Their throwing off in this way is from the lungs. tity of fluid cxhaled from the human body by quanfenfible perfpiration is very confiderable. Sa etorins (o) fubftance of the kin, with certain glands or follicles, which difcharge a fat and oily humour that ferves to lubricate and foften the fkin. When the fluid they fecrete has acquired a certain degree of thicknefs, it approaches to the colour and confiftence of finet; and from this appearance they have derived their name of febaceous glands. They are found in the greateft number in the nofe, ear, nipple, axilla, groin, fcrotum, vagina, and prepuce.

Befides thefe febacenus glands, we read, in anatomi"cal books, of others that are defcribed as fmall fpherical bodies placed in all parts of the fkin, in much greater abundance than thofe juft now mentioned, and namad miliary, from their fuppofed refemblance to milletfeed. Steno, who firft defcribed thefe glands, and Mal-
(N) Lieuwenliocck afferts that one drop of fweat is formed by the conflux of fifteen drops of pafpirable vapour.
(o) The infenfible perfpiration is fometimes difinguifted by the name of this phyfician, who was born in the territorios of Venice, and was afterwards a profeffor in the univerfity of ladua. After cfimating the aliment he took A, and the fenfible fecrecions and difcharges, he was enabled to afcertain with great acriracy the weight or quantity of infenfible perfuiration by means of a ftatical chair which he contrived for this purpofe;

Of the many years in a feries of fatical experinients, demon-Integu- ftrated long ago what has been confirmed by later ob$\underbrace{\text { ments, \&c. }}$ fervations, that the quantity of vapour exlaled from the fin and from the furface of the lungs, amounts nearly to $5-8$ ths of the aliment we take in. So that if in the warm climate of Italy a perfon eats and drinks the quantity of eight pounds in the courfe of a day, five pounds of it will pafs off by infenfible perfpiration, while three pounds only will be evacuated by ftool, urine, faliva, \&c. But in countries where the degree of cold is greater than in Italy, the quantity of perfpired matter is lefs; in fome of the more northern climates, it being found not to equal the difcharge by urine. It is likewife obferved to vary according to the feafon of the ycar, and according to the couftitution, agc, fex, difeafes, diet, exercife, paffions, \&c. of different pcople.
From what has been faid on this fubject, it will be eafily conceived, that this evacuation cannot be cither much increafed or diminilhed in quantity without affecting the health.

The perfpirable matter and the fweat are in fome meafure analogons to the urine, as appears from their tafte and faline nature (P). And it is worthy of obfervation, that when either of thefe fecretions is increafed in quantity, the other is diminifhed; fo that they who perfpire the leaft, ufually pafs the greatert quantity of urine, and vice verfa.

§6. Of the Nails.

The nails are of a compact texture, hard and tranfparent like horn. Their origin is fill a fubject of difpute. Malpighi fuppofed them to be formed by a continuation of the papillæ of the fkin: Ludwig, on the other hand, maintained, that they were compofed of the extremities of blood-veffels and nerves; both thefe opinions are now defervedly rejected.

They feem to poffefs many properties in common with the cuticle; like it they are neither vafcular nor fenfible, and when the cuticle is feparated from the true fkin by maceration or other means, the nails come away with it.

They appear to be compofed of different layers, of unequal fize, applied one over the other. Each layer feems to be formed of longitudinal fibres.
In each nail we may diftinguifh three parts, viz. the root, the body or middle, and the extremity. The root is a foft, thin, and white fubftance, terminating in the form of a crefcent; the epidermis adheres very
flongly to this part ; the body of the nail is broader, of the rcdder, and thicker, and the extremity is of fill great- Integuer firmnefs.

The nails increafe from their roots, and not from their upper extremity.

Their principal ufe is to cover and defend the ends of the fingers and toes from external injury.
§ 7. Of the Hair.
The hairs, which from their being gencrally known do not feem to require any definition, arife from diftinct capfules or bulbs feated in the cellular membrane under the fkin (e). Some of thefe bulbs inclofe feveral hairs. They may be obferved at the roots of the hairs which form the beard or whifkers of a cat.
The hairs, like the nails, grow only from below by a regular propulfion from their root, where they receive their nourihment. Their bulbs, when viewed with a microfcope, are found to be of various fhapes. In the hcad and fcrotum they are roundifl; in the eyebrows they are oval ; in the other parts of the body they are nearly of a cylindrical fhape. Each bulb feems to conlift of two membranes, between which there is a certain quantity of moifture. Within the bulb the hair feparates into three or four fibrillæ; the bodies of the hairs, which arc the parts without the fkin, vary in foftnefs and colour according to the difference of climate, age, or temperament of body (R).

Their general ufe in the body does not feem to be abfolutely determined; but hairs in particular parts, as on the eye-brows and cye-lids, arc deftined for particular ufes, which will be mentioned when thofe parts arc defcribed.

§ 8. Of the Cellular Membrane and Fat.

The cellular membrane is found to inveft the mof cellular minute fibres we are able to trace; fo that by modern membrar phyfiologifts, it is very properly confidered as the univerfal connecting medium of every part of the body.

It is compofed of an infinite number of minute cells united together, and communicating with each orher. The two difeafes peculiar to this membrane are proofs of fuch a communication; for in the cmppes fenna all its cells are filled with air, and in the anlafarca they are univerfally diftended with water. Befides thefe proofs of communication from difeafe, a familiar inftance of it may be obferved amongft butchers, who ufually puncture this membrane, and by inflating it with air add to the good appearance of their meat.

The
and from his experiments, which were conducted with great induftry and patience, he was led to determine what kinds of folid or liquid aliment increafed or diminifhed it. From thefe experiments he formed a fyftem, which he publifhed at Venice in 1614, in the form of aphorifins, under the title of "Ars de Medicina Statica."
(p) Minute chryftals have been obferved to fhoot upon the cloaths of men who work in glafs-houfes. Haller Elem. Phiy.
(Q) Malpighi, and after him the celebrated Rayfch, fuppofed the hairs to be continnations of nerves, being of cpinion that they originated from the papillæ of the fkin, which they confidered as nervous; and as a corroborating proof of what they advanced, they argued the pain we feel in plucking them out : but later annomifts feem to have rejected this doctrinc, and confidr the hairs as particular bodies, not arifing from the papilla (for in the parts where the papillæ abourd moft there are no hairs), but from buibs or capfules, which are peculiar to them.
(R) The hairs differ likewife from each onher, and may not be improferly divided inte two claffes; one of which may include the hair of the head, cuin, pribes, and axilic; aind the other, the fofter lairs, which are te be obferved almoft every where on the furfare of the body.

The cells of this membrane ferve as refervoirs to the oily part of the blood or Fat, which feems to be depofitch in them, either by tranfudation through the coats of the arteries, that ramify through thefe cells, or by particular veffels, continued from the end of arteries. Thefe cells are not of a glandular ftrusture, as Malpighi and others after him have fuppofed. The fat is abforbed and carried back into the fyftem by the lymphatics. The great wafte of it in many difeafes, particularly in the confumption, is a fifficient proof that fuch an abforption takes place.

The fulnefs and fize of the body are in a great meafure proportioned to the quantity of fat contained in the cells of this nembrane.

In the living body it feems to be a fluid oil, which concretes after death. In graminivorous animals, it is found to be of a firmer confiftence than in man.

The fat is not confined to the fkin alone, being met with every where in the interftices of mufcles, in the omentum, about the kidneys, at the bafis of the heart, in the orbits, \&c.

The chief ufes of the fat feems to be to afford moifure to all the parts with which it is connected; to facilitate the action of the mufcles; and to add to the beaty of the body, by making it every where fmooth and equal.

Sect. II. Of the Muscies.

THE mufcles are the organs of motion. The parts that are ufually inciuded under this name confift of diftinct portions of flefh, fufceptible of contraction and tclaxation ; the motions of which, in a natural and healthy flate, are fubject to the will, and for this reafon they are called voluntary mufcles. But befides thefe, there are otler parts of the body that owe their potver of contraction to their mufcular fibres; thus the heart is of a mufcular texture, forming what is called a bollow mufcle ; and the urinary bladder, fomach, inteftines, \&x. are enabled to ast upon their contents, merely becaufe they are provided with mufcular fibres. Thefe are called inzoluntary mufcles, becaufe their motions are not dependent on the will. The mufcles of refpiration, being in fome meafure influenced by the will, are faid to have a mixed motion.

The names by whicli the voluntary mufcles are diftinguifhed, are founded on their fize, figure, fituation, ufe, or the arrangement of their fibres, or their origin and infertion. But befides thefe particular diftinctions, there are certain general ones that require to be noticed. Thus, if the fibres of a mufcle arc placed parallel to each other in a ftraight direction, they form what is ftyled a rectilinear mufcle; if the fibres crofs and interfect each other, they conftitute a compound mufcle; a radiated one, if the fibres are difpofed in the manner of rays; or a penniform mufcle, if, like the plume of a pen, they are placed obliquely with refpect to the tendon.

Mufcles that ast in oppofition to each other, are called antagonifce; thus every extenfor or mufcle las a flexor for its antagonift, and vice verfa. Mufcles that concur in the fame action are ftyled congeneres.

The mufcles being attached to the bones, the latter unay be confidered as levers that are moved in different diirections by the contraction of thofe organs.

The end of a mufcle which adheres to the moft of the fixed part is uftally called the origin, and that which Integuadheresto the more noveable part, the infertion, of the $\underbrace{\text { ments, \&c. }}$ mufcle.

In every mufcle we may diftinguifh two kinds of fibres; the one foft, of a red colour, fenfible, and irritable, called flefoy fibres; the other of a firmor texture, of a white gliftening colour, infenfible, without irrisability or the power of contracing, and named tendinous fibres. They are occafionally intermixed ; but the flefhy fibres generally prevail in the belly or middle part of a mufcle, and the tendinous ones in the extremities. If thefe tendinous fibres are formed into a round flender chord, they form what is called the terdon of the mufcle; on the other hand, if they are fpread into a broad flat furface, the extremity of the mufcle is ityled aponeurofis.

The tendons of many mnfeles, efpecially when they are long and expofed to preffure or friction in the grouves formed for them in the bones, are furrounded by a tendinous fleath or fafcia, in which we fometimes find a finall mucous fac or burfa mucofa, which obviatcs any inconvenience from friction. Sometimes we find whole mufcles, and even feveral mufcles, covered by a fafcia of the fame kind, that affords origin to many of their fibres, dipping down between them, adhering to the ridges of bones, and thus preventing them from fwelling too much when in action. The moft remarkable inftance of fuch a covering is the fafcia lata of the thigh.

Each mufcle is inclofed by a thin covering of cellular membrane, which has been fometimes improperly confidered as peculiar to the mufcles, and defcribed under the name of propria membrana mufoulofa. This cellular covering dips down into the fubfance of the muscle, connecting and furrounding the moft miuute fibres we are able to demonftrate, and affording a fupport to their veffels and nerves.

Lieuwhenhoeck fancied he had difcovered, by means of his microfcope, the ultimate divifion of a mufcle, and that he could point out the fimple fibre, which appeared to him to be an hundred times lefs than a hair : but he was afterwards convinced how much he was miftaken on this fubject, and candidly acknowledged, that what lie had taken for a fimple fibre was in fact a bundle of fibres.

It is eafy to obferve feveral of thefe fafciculi or bundles in a piece of beef, in which, from the coarfenefs of its texture, they are very evident.

The red colour which fo particularly diflinguiflies the mufcular or flefhy parts of animals, is owing to an infinite number of blood-veffels that are difperfed through their fubftance. When we macerate the fibres of a mufcle in water, it becomes of a white colour like all other parts of the body divefted of their blood. The blood-veffels are accompanied by nerves, and they are both diftributed in fuch abundance to thefe parts, that in endeavouring to trace the courfe of the blood-veffels in a mufcle, it would appear to be formed altorether by their ramifications; and in an attempt to follow the branches of its nerves, they would be found to be equal in proportion.

If a mufelc is pricked or irritated, it immediatcly contracts. This is called its irritable principle ; and

Part II.

A N A 'I
of the this irritability is to be confidered as the characteriftic $\underbrace{\text { Mufcles. of mufcular fibres, and may ferve to prove their exift- }}$ ence in parts that are too ninute to be examined by the eye. This power, which difpofes the mufcles to contract when ftimulated, independent of the will, is fuppofed to be inherent in then ; and is therefore named vis infita. This property is not to be confounded with clanticity, which the membranes and other parts of the body poffefs in a greater or lefs degree in common with the mufcles; nor with fenfibility, for the heart, though the moft irritable, feems to be the leaft fenfible of any of the murcular parts of the body.

After a mufcular fibre has contracied, it foon returns to a ftate of relaxation, till it is excited afrefh, and then it contracts and relaxes again. We may likewife produce fuch a contraction, by irritating the nerve leading to a mufcle, although the nerve itfclf is not affceted.

This principle is found to be greater in fmall than in large, and in young than in old, a nimals.

In the voluntary mufcles thefe effects of contraction and relaxation of the flethy fibres are produced in obedience to the will, by what may be called the vis nervofa, a property that is not to be confounded with the vis infita. As the exiftence of a vis infita differeni from a vis nervea, was the doctrine tanght by Doctor Haller in his Elem. Phyf. but is at prefent called in queftion by feveral, particularly Doctor Monro, we think it necelfary to give a few objections, as fated in his Obfervations on the Nervous Syftem:
"The chief experiment (lays the Doetor) which feems to have led Dr Haller to this opinion, is the wellknown one, that the heart and other mufeles, after being detached from the brain, continue to act fpontaneoufly, or by fimuli may be roufed into action for a confiderable length of time; and when it cannot be alledged, fays Dr Haller, that the nervous fluid is by the mind, or otherwife, impelled into the mufcle.
"That in this inftance, we cannot comprelend by what power the nervous fluid or energy can be put in motion, muft perhaps be granted: Bat has Dr Haller given a better cxplanation of the manner in which his fuppofed vis infita becomes astive ?
"I If it be as difficult to point out the caule of the action of the vis infita as that of the action of the vis nervea, the admiffion of that new power, inftead of relieving, would add to our perplexity.
"We fhould then liave admitted, that two caufes of a different nature were capable of producing exactly the fame effeg ; which is not in general agreeable to the laws of naturc.
"We fhould find other confequences arife from fuch an hypothe fis, which tend to weaken the credibility of it. For infance, if in a found animal the vis nervea alone produces the contr? Tion of the mulcles, we will afk what purpofe the vis infita ferves? If both nperate, are we to fuppofe that the vis nervea, impelled by the mind or living principle, gives the order, which the vis infita execntes, and that the nerves are the intern.miii ; and fo admit two wife agents employed in cvery the moft fimple action? But inftead of feculating farther, let us learn rine effeet of experiments, and endeavour from thefe to draw plain conclufions.
" y . When I poured a folution of opium in water under the fkin of the leg of a frog, the mufcles, tothe furface of which it was applied, were very foon deprived of the power of contraction. In like manner, when I poured this folution into the cavity of the heart, by opening the vena cava, the heart was almoft inftantly deprived of its power of motion, whether the experiment was performed on it fixed in its place, or cut out of the body.
" 2 . I opened the thorax of a living frog; and then tied or cut its aorta, fo as to put a fop to the circulation of its bluod.
"I then opened the vena cava, and poured the folution of opium into the heart ; and found, not only that this organ was inftantly deprived of its powers of action, but that in a few minutes the moft diftant mufcles of the limbs were extremely weakerted. Yet this weaknefs was not orving to the want of circulation, for the frog could junp about for more than an hour after the heart was cut out.
"In the firft of thefe two experiments, we obferved the fuppofed vis infita deftroyed by the opium ; in the latter, the vis nervea; for it is evident that the limbs were affected by the fympathy of the brain, and of the nervous fyftcm in general, with the nerves of the heart.
" 3 . When the nerve of any mufcle is firf divided by a tranfverfe fection, and then burnt with a hot iron, or punctured with a needle, the mufcle in which it terminates contracts violently, exactly in the fame manner as when the irritation is applied to the fibres of the mufcle. But when the hot iron, or needle, is confined to the nerve, Dr Haller himfelf muft have admitted, that the vis nervea, and not the vis infita, was excited. But here I would aflk two queftions.
" Firft, Whether we do not as well underfard how the vis nervea is excited when irritation is applied to the mufcle as when it is applied to the trunk of the nerve, the impelling power of the mind feeming to be equally wanting in both cafes ?
"Secondly, If it appears that irritation applied to the trunk of a nerve excites the vis nervea, why foould we doubt that it can equally well excite it when applied to the fmall and very ferfible branches and terminations of the nerve in the mufcle?
"As, thercfore, it appears that the fuppofed vis infita is deftroyed or excited by the fame means as the vis nervea; nay, that when, by the application of o: pirm to the heart of a frog, after the aorta is cut and the circulation interrupted, we have deftroyed the vis infita, the vis nervea is fo much extinguifned, that the animal cannot act with the diftant mufcles of the limb ; and that thefe afterward grow very torpid, or lofe much of their fuppofed vis infita; it feems clearly to follow, that there is no juft ground for fappofing that any other yrinciple produces the contracion of a mufcle."

The vis nervofa, or opcration of the mind, if we may fo call it, by which a mufcle is brought inio contraiden, is not inherent in the mofle like the vis infisa; ncither is it perpetual, like this latter property, Atier long continued or violent excrile, for example,
the voluntary mufeles become painful, and at length incapable of further adion; whereas the heart and other involuntary mufcles, the motions of which depend folely on the vis infita, continue through life in a conftant ftate of action, without any inconvenience or wafte of this inherent principle.

The action of the vis nervofa on the voluntary mufcles, conftitutes what is called mufcular nootion; a fubject that has given rife to a variety of hypothefes, many of them ingenious, but none of them fatisfactory.

Borelli and fome others have undertaken to explain the caufe of contraction, by fuppofing that every mufcular fibre forms as it were a chain of very minute bladders, while the nerves which are diftributed through the mufcle, bring with them a fupply of animal fpirits, which at our will fill thefe bladders, and by increafing their diameter in width, fhorten them, and of courfe the whole fibre.

Borelli fuppofes thefe bladders to be of a rhomboidal flape; Bernouilli on the other hand contends that they are oval. Our countryman, Cowper, fancied he had filled them with mercury ; the caufe of this miftake was probably owing to the mercury's infinuating itfelf into fome of the lymphatic veffels. The late ingenious Mr Elliot undertook to account for the phemomena of mufcular motion on principles very different from thofe juft now mentioned. He fuppofed that a dephlogifticated ftate of the blood is requifite for mufcular action,
and that a communication of phlogifton to the blood or the is a neceffary effect of fuch action.

We know that the mufcular fibre is flortened, and ments, \&e. that the mufcle itfelf fwells when in action; but how thefe phenomena are produced, we are unable to determine. We likewife know that the nerves are effential to mufcular motion; for upon dividing or making a ligature round the nerve leading to a inufcle, the latter becomes incapable of motion. A ligature made on the artery of a mufcle produces a fimilar effect ; a proof this, that a regular fupply of blood is alfo equally neceffary to mufcular motion. The caufe of palfy is ufually not to be fought for in the mufcle affected, but in the nerve leading to that mufcle, or in that part of the brain of fpinal marrow from which the nerve derives its origin.
Of the particular Mufcles.

As the enumeration and defeription of the particular mufcles muft be dry and unentertaining to the generality of readers, yet cannot be altogether omitted in a work of this nature, it appeared eligible to throw this part of the fubject into the form of a table ; in which the name, origin, infertion, and principal ufe of each mufcle, will be found defcribed in few words, and occafionally its etymology when it is of Greek derivation or difficult to be underftood.

A TABLE of the MUSCLES, arranged according to their Situation.

[N. B. This table does not include all the mufcles of the body; thofe belonging to the cyes, intcrnal ear, intefinum rectum, and the male and female organs of generation, being defcribed in other parts of the work. The reader will be pleafed to obferve likewife, that although all the mufcles (a few only excepted) are in pairs, mention is here made only of the mufcles of one fide.]

Muscees fituated under the integuments of the cra-
เบ่แก - -

1. Occipito frontalis. From the tranfverfe Into the Kkin of the To pull the fkin of

Infertion.
Ufe.
Name. Origin.
ridge of the os oce eye-brows. the head backcipitis.
2. Corrugator fuper- From above the join- Into the inner part To draw the eyecilii. ing of the os frontis, os nafi, and os maxillare.
of the occipito- brows towards each frontalis. other, and to wrin- wards, and to raife the eye-brows and Kkin of the forehead. kle the forehead.
eye-lids - - I. Orbicularis palpe. From around the edge Into the nafal pro- To fhut the eye. brarum. of the orbit. cefs of the os maxillare.
2. Levator palpebræ From the bottom of Into the cartilage of To open the cye. fuperioris. the orbit, near the the npper eye-lid. optic foramen.
external ear - 1. Attolens auriculam.

From the tendon of Into the upper part To raife the ear. the occipito fron- of the car. talis near the os temporis.
2. Anterior auriculæ. From near the back Into an eminence be- To raife this emipart of the zygoma. hind the helix. nence, and to pull it forwards.
3. RE=

Of the

 Murcles.
Name.
 Origin.
 Infertion.

3. Retrahentes (s) au- From the outer and Into the convex part To fretch the conriculæ. back part of the of the concha. cha, and pull the root of the maftoid procefs.

Muscles of the car-
tilages of the ear \quad I. Tragicus.
2. Anti-tragicus.

From the onter and Into the upper part To deprefs the conmiddle part of the of the tragus. cha, and pull the concha, near the tragus. point of the tragus a little outwards.
From the root of the Into the upper part To dilate the mouth inner part of the of the anti-tragus. of the concha. helix.
3. Tranfverfus-auri- From the upper part Into the inner part To fretch the eoncha
culx. of the coneha. of the leclix. and fcapha, and likewife to pull the parts it is connected with towards each other.
4. Helicis major. From the upper, ante- Into the cartilage of To deprefs the upper rior, and acute part the helix, a little part of the helix. of the helix. above the tragus.
5. Helicis minor. From the lower and Into the helix, near To contract the fiffore part of the he- the fiffure in its fure. lix. cartilage.

——or the nofe, naris.

From the outcr part Into the nafal proof the root of the cefs of the os maxala nafi.

To fraigliten the noftrils, and likewife to corrugate the fkin of the nofe.
illare, and anterior extrenity of the os nafi.

Of the Mufcles.

Name.
Origin.
Infertion.
UTe.
of the
7. Depreflor anguli At the fide of the Into the angle of the To draw the cornct Mufcles. of the mouth down.

Muscles of the lowc: jaw,
I. Temporalis.
2. Maffeter (w).
3. Pterygoideas in- of the os temporis. as in- From theinner furface ternus. of the outerwing of the pterygoid pro-
cefs of the os fphethe pterygoid pro-
cefs of the os fuhcnoides, and from the procefs of the the procels of the
os palati that helps to form the pterygoid foffa
4. Pterygoideus ex-From the external ala ternus. of the pterygoid procefs, a finall part of the adjacent os maxillare, and a ridge in the temporal procefs of the os fplienoides.
From part of the os bregmatis and os frontis; fquamous part of the os temporis; back part of the os malæ, and the temporal procefs of the os fphenoides (v)
From the malar procefs of the os maxillare, and the lower edges of the os malæ, and of the zygomatic procefs

Into the fore part of the condyloid procefs of the lower jaw, and likewife of the capfular ligament.
coronoid procefs, and that part of the jaw which fupports that and the condyluid procefs. wards.

To draw the under lip downwards and fomewhat outwards

To raife the under lip and Kkin of the chin.

To flut the mouth by confraining the lips.

Into the coronoid pro- To move the lowe: cefs of the lower jaw upwards. jaw.

Inio the lower jaw on Toraife the lower jaw its inner fide and and draw it a little near its angle.

To raife and likewifc to move the jaw a little forwards and backwards.
(u) This mufcle is, in a great meafure, if not wholly, formed by the buccinator, zygomatici, depreffores, and other mufcles that move the lips. Its fibres furround the month like a ring.
(v) Some of its fibres likewife have their oripin from a froing fafcia that covers the mufcle and adheres to the bone round the whole circumference of its origin. When we remove this covering, we find the mufcle of a femicircular flape with its fibres, converging and farming a ftrong riddle tendon.
(w) So called from its ufe in chewing, its derivation heing from μ arionopes, manduco, "to eat."
(x) This happens when the mufcle acts fiagiy. When both act, the jaw is brought honizomally forwards.
(y) This broad and thin mafcular expanfion, which is fituated immediately under the common integments, is by Winlow named mufcuhus cutaneus. Galen gave it the name of corkaturiua puases (Flaty fincerojoides); the ctymolozy of which is from a iazupuos, ciliatatio, End pers, maty culus, and sidos, forma.

MUSCles fituated between the trunk and the os hyoides.
$\begin{array}{lllllll}A & \mathrm{~N} & \mathrm{~A} & \mathrm{~T} & \mathrm{O} & \mathrm{M} & \mathrm{Y} .\end{array}$

Name. Origin. Infertion.
the pectoral, deltoid, and trapezius mufcles.
2. Maftoideus (z). From the upper part Into the mafooid pro- T of the fternum, and from the upper and fore part of the clavicle.
cefs, and as far back as the lamb. doidal future.
ments of the cheek. downtwards; and when the mouth is fhut, to drave all that part of the 1 kin to which it is connested below the lower jaw upwards.
To move the head to one fide, or when both mufclesact, to bend it forwards.
of the Mufcles.
t. Omo-hyoideus (A). From the upper conta Into the bafis of the To draw the os lyoi-
of the fcapula near its niclic; from part of a ligament that extends acrofs this nichic, and fometimes by a few fibres, from the coracoid procefs.
2. Sterno-hyoideus. From the cartilage of Into the bafis of the To draw the os hyoithe firftrib, the inner and upper part of the fternum, and a fmall part of the clavicle.
des in an oblique direction downwards. os hyoides. des downwards.
3. Hyo-thyroideus. From part of the ba- Into a rough oblique To raife the thyroid fis and horn of the line at the fide of cartilage, ordeprefs os liyoides. the os hyoides the thyroid cartilage.
4. Sterno-thyroideus. From between the Immediately under To pull the thyroid and 2 d ribs at the upper and inther part of the ftcrnum.
5. Crico-thyroideus. From the anterior I cricoid cartilage.
cartilages of the ift the hyo-thyroidens. cartilage downwards.

Into the lower part and inferior horn of the thyroid' cartilage.

To pull the cricoid cartilage upwards and backwards, or the thyroid forwards and downwards.

- fituated between the os liyoi-

 des and lower jaw,I. Diagrafticus (B). From a foffa at the Into the lower and Todrawthe lowerjaw root of the maftoid anterior part of the downwards. procefs, and likewife from the os hyoides.
2. Stylo-hyoideus (c). Froin the bafis of the Into the fide and fore To draw the os hyoifyloid procefs. part of the os hy- des obliquely upoides near its bafe. wards.
$4 \mathrm{U}_{2}$
3. Mylo-
(z) This, on account of its two origins, is by Albinus defcribed as two diftinct mufcles, which he names fierno-miafoideus and cleido-miafloideus.
(A) This mufcle does not always arife from the coracoid procefs, it feems to have been improperly named coraco-hyoides by Douglas and Albinus. Winflow calls it omo-bjoideus, on account of its general origin from the fcapula.
(B) From dis and rasup (biventer), becaufe it has two fiefly bellies with a middle tendon. This tendon paffics through the fylo-liyoideus.
(c) In fome fubjects we nucet with another mufcle, which from its having nearly the fame origin, infertion, and ufe as this, has been named fiylo-byoideus alter.

Name.
3. Mylo-hyoidcus (D).

Orizin. In Pertion.

[ye.
of the
From the infide of Into the hafis of the 'ronote the os hyei- Nufcles. the lower jaw, be- os hyeides. des to cither fide, wisen the latt dens formards or upmolaris and the wards. chin.
4. (E.) Geno-hyoide. From the infide of the Into the bafe of the To move the os livus. chin. os lyyoides. oides forwards or upwards.
5. Genio-gloffus. From the infide of the Into the tongue and Tumove the congue chin. bafis of the os hy- in various direcoides. tions.
6. Hyo-glofius (F). From the horn, bafis, Into the tongle late- To chaw the tongate and appendix of the rally. downwards and inos hyoides.
Laterally from the Into the extremity of Toflorten the tongue root of the tongue. the tongue.

From the ftyloid pro- Into the fide of the Tomove the tongue cefs, and fometimes tongue from the backwards and to alfo from a liga- root to near its tip. one fide. ment that extends from thence to the angle of the lower jaw.
9. Stylo-plaryngreus. From the bafis of the Into the fide of the To raife the thyroid
ftyloid procefs.

USCLES fituated about the fances,
I. Palato-pliaryngæus.
10. Circumflexue-ja- F lati.
part of the Euftachiian tube, and from the fpinous procefs of the os fphenoides.
if. Levator palati. From the membra- Into the velum pen- To pull the velum nous part of the dulum palati. backwards. Euftachian tube, and the extremity of the os petrofum.

From the lower and Into the upper and To raife the plarynx
pharynx and pofterior part of the thyroid cartilage. cartilage and pharynx, and likewife to dilate the latter.
Into the femilunar To dilate and draw edge of the os palati and the velun pendulum palati (c). the velum obliquely downwards. anterior part of the cartilaginous extremity of the Euftaclian tube (\boldsymbol{r}) ; the tendinous expanfion of the circumflexus palati; and the velum pendulum palati near the bafis and back part of the uvula.
pofterior part of the and thyroid cartithyroid cartilage. lage, or to pull the velum and uvula backwards and downwards.
(D) So named from its arifing near the dentes molarcs ($\mu v \mathrm{~m}_{0}$), and its being inferted into the os hyoides.
(E) Froin ressoo, mentum, the "chin."
(F) From xepas, cormu, and znacoa, lingua, "the tongue."
(G) This mufcle in its courfe forms a round tendon, which, after croffing over a kind of hook formed by the inner plate of the pterygoid procefs of the fphenoid bone, expands into a tendinons meinbrene.
(н) The few fibres that arife from the Eufachian tube are defcribed as a difinct mufcle by Albinus, under. the name of falfingo phargngezs. They ferve to dilate the mouth of the tube.
of the Biufeles.

Name. Gibiz. Jifortich.

2. Confrictor inhmi From near the bafis Into the velum per- To meto the ingue of the tnngue latc- dulm palai, 1icar anh inaw :is riam rally. the bafis and fore toment in : i^{i}. part of the nevia.
3. Azygos uvulæ. From the end of the Into the extremity of To finment the wat: n, future that unites the uval?. and bring, it fulthe olla palati.
$\begin{array}{ll}\text { faucium. } & \text { of the } \\ \text { rally. }\end{array}$

Muscees at the back
part of the pharynx

glotis
r. Confrictor pharyn- Fro gis fiperior.
chnciform procefs of the occipital bonc; the pterygoid procefs of the as fphenoides, and from each jatv near the laft dens molares (k).
2. Confrictor pharyn- From the lorn and Into the middle of To draw the os hyoigis medius (L). appendix of the os hyoides, and from the ligament that mintes it with the thyroid cartilage. the proceffis cunciformis of the accipital bone, abont des and pharynx upwards, and to its middle and before the great foramen.
3. Confrictor pharyn- From the cricoid and Into the middle of To comprefs part of gis inferior (n). thyroid cartilages. the pharyna. the pharynx.
I. Crico-arytrenoide-From the fide of the Into the bafis of the To open the glottis. us lateralis. cricoid cavilage. arytienoil cari-
2. Crico-arytænoide- From the cricoid car- Into the bafis of the To open the glottis. us pofticus. tilage pofteriorly. aryternoid cartilage pofferiorly.
3. Arytenoideus ob. From the bafis of one Nearthe extremity of To draw the parts it liquis. of the arytænoid
4. Arytrenoideus cartilages. the other arytæ- is connected wih noid cartilage. towards each other. tranfverfus.

From one of the ary - In tænoid cartilages laterally. rally.
5. Thyreo-arytænoi- From the pofterior Into the arytwnoid To draw the arytedeus. and under part of cartilage. noid cartilage forthe thyroid cartilage.
6. Arytæno-cpiglot- From the upper part Into the fide of the To move the epiglottideus. of the arytænoid epiglotis. tis outwards. cartilage laterally.
7. Thyreo-epigloti- From the thyroid car- Into the fide of the To pull the epiglotdeus. tilage. epiglotis. tis obliquely downwards (N.)

Muscles

(1) This mufcle, and the palato-pharyngæus, likewife ferve to clofe the paffage into the fances, and to ca rry the food into the pharynx.
(к) The three orders of fibres here mentioned, with a few others derived from the tongue, have given occafion to Douglas to defcribe them as four diftinct mufcles, under the names of cephalo-pharyngeus, mylo-pharyzgauls, ptery-pharyngans, and glofoo-pharyngaus.
(1) Douglas makes two mufcles of this, the byo-pharyngaus and fyndefyo-pharyngaus.
(n) The crico-pharyngæus and thyro-pharyngæus of Douglas.
(N) When either this or the preceding mufcle acts with its follow, the epigiottis is drawn directly cowne wards upon the glotis.

Mufeles. MUSCLES at the fore part of the neck, clole to the verteName. 1. Rectus capitis in. From the anterior ex- Into Infertion. tremities of the traniverfe proceffes of the five lowermoft cervical vertebræ.
2. Rectus capitis in- From the anterior Near the bafis of the To affift the laft deternus minor. and upper part of condyloid procefs feribedmufcle. the firft cervical of the os occipitis. vertcbra.
3. Rectus capitis la- Fiom the anterior Into the os occipi- To move the head to teralis. and upper part of the tranfverfe procefs of the firft cervical vertebra.
4. Longus colli. Within the thorax, Into the fecond cer- To pull the neck to laterally from the vical vertebraante- one fide (0). bodics of the three riorly. uppermoft dorfal vertebre ; from the bafis and fore part of the tranfverfe proceffes of the firft and fecond dorfal vertebræ, and of the laft cervical vertebra; and laftly, from the anterior extremities of the tranfverfe proceffes of the 6 th, 5 th, 4 th, and 3 d cervical vertebræ.
the cuneiform pro- forwards. cers of the os occipitis.
tis, oppofite to the one fide. fyylo-mantoid foramen.

Uje. head

A $\quad \mathrm{N} \quad \mathrm{A} \quad \mathrm{T} \quad \mathrm{O} \quad \mathrm{M} \quad \mathrm{Y}$.

$\underbrace{\text { Murcios. }}$
 Part II.

at the fore
part of the abdo-
I. Obliquus externus. From the lower edges Intothe linea alba(s), To comprefs and fupof the eight infe- offa pubis (e), and port the vifcera, afrior ribs, near their fpine of the ilium fift in evacuating cartilages. (R). the fæcesandurine,
draw down the ribs, and bend the trunk forwards, or ob-
liquely to one fide. 2. Obliquus internus. From the fpinous pro- Into the cartilages of To affift the obliquus cefs of the three all the falfe ribs, externus. lowermoft lumbar linea alba (s), and
(o) When both mufcles act, the neck is drawn directly forwards.
(p) The linea alba is that tendinous expanfion which reaches from the cartilago enfformis to the os pubis. It is formed by the interlacement of the tendinons fibres of the oblique and tranfverfe mufcles, and on this account fome anatomifts liave confidered thefe as three digaftric mufies.
(e) A little above the pubis the tendinous fibres of this mufcle feparate from each other, fo as to form an opening called the ring of the obliquus externus, and commonly, though improperly, the ring of the abdominal mufcles, there being no fuch aperture cither in the tranfverfalis or obliquus internus. This ring in the male fubject affords a paffage to the fpermatic veffels, and in the female to the round ligament of the uterus.
(R) From the anterior and upper fpinous procefs of the ilium, this mufcle is fretched tendinous to the os pubis, and thus forms what is called by fome Fallopius's, and by others Poupart's ligament. The blood-veffels pafs under it to the thigh.
(s) The tendon formed by the upper part of this mufcle in its way to the linea alba is divided into two layers. The pofterior layer runs mender, and the anterior one over, the reetus mufcle.

Name.

3. Tranfverfalis.

Muscles at the forc
part of the thorax -

Origin.

vertebre, the back part of the os facrum, the fpine of the ilium, and back part of Fallopius's ligament (T).
From the cartilages of the feven inferior ribs ; the tranfverfe proceffes of the laft dorfal, and four upper lumbar vertebre ; the inner part of Fallopius's ligament and the fpine of the i lium.
4. Rectus abdominis. From the upper edge Into the cartilares of To comprefs the fore of the pubis and the 5 th, 6 th, and
the fymphyfis pubis. 7th ribs, and the edge of the cartilago enfiformis(U).
5. Pyramidalis (v). From the anterior and Int upper part of the pubis. and inner edge of the rectus, com-

Infertion.

fore part of the pubis.
part of the abdomen, and to bend the trunk forwards.

To affift the lower portion of the rectus. monly about two inches above the pubis.
nto the linea alba To comprefs the aband cartilago enfi- dominal vifcera. formis.

1. Pectoralis Major. From the cartilagi- Into the upper and To draw the arm for-
nous ends of the inner part of the wards, or oblignc-
5th and 6 th ribs; os lumeri (w).
the fternum, and
anterior part of the forwards.
clavicle.
From the cartilage of Into the under fir- To move the clavicle
the firft rib.
face of the cla- forwardsand down-
vicle.
(τ) From this part it detaches fome fibres which extend downwards uron the fpermatic cleord, and form what is defcribed as the cremafter mufcle.
(u) The fibres of the rectus are generally divided by three tendinous interfections. The two upper thirds of this mufcle paffing between the tendinous layers of the obliquus internus, are inclofed as it were in a fheath; but at its lower part we find it immediately contiguons to the peritonxum, the inferior portion of the tendon of the tranfverfalis paffing over the rectus, and adhering to the anterior layer of the obliquins internas.
(v) This mufcle is fomerimes wanting.
(w) The fibres of this mufcle pafs towards the axilla in a fedoing manner, and with thofe of the latifimus diorfi from the arm-pit.
(x) This and fone other mufles derive their name of formins, from their arifing by a namber of tendinous or flefhy digitations, "efembling the teeth of a faw (fira).
2. Diapliragma (y^{\prime}).
3. Levatores confta- From the tranfverfe Into the upper fide of To move the ribs up-
4. Interconales exter- From the lower edge Into the fuperior edge To elevate the ribs
ni.
of cach upper rib. of each lower rib.
5. Intercoftales interni (A).
6. Sterno-coftales (${ }^{\text {B }}$). From the cartilagoen- Into the eartilages of To deprefs the cartififormis, and lower the $2 \mathrm{~d}, 3 \mathrm{~d}$, 4 th, lages of the ribs. and middle part of 5 th, and 6 th ribs. the fternum.
7. Trapezius (c), or From the middle of Into the pofterior To move the fcapula. cucullaris. the os occipitis, and the finous proceffes of the two infcrior cervical, and of all the dorfal, vertebræ (D).
8. Rhomboideus (E). F e pinous proceffes of the three lowermoft cervical, and of all the dorfal vertebre.
3 Latifimus dorfi. From part of the In fpine of the os ilium, the fpinous proceffes of the os facrum and lumbar vertebre, and of fix or eight of the dor-
lialf of the clavicle, part of the acromion, and the fpine of the fcapula.
rum. proceffes of the laft cervical and the cleven upper dorfal vertebræ.
each rib, near its wards andoutwards. tuberofity.
 ,

Part II.
Of the Mufcles.

A $\mathrm{N} \quad \mathrm{A} \quad \mathrm{T} \quad \mathrm{O} \quad \mathrm{M} \quad \mathrm{Y}$
Name.
4. Serratus inferior pofticus.
5. Levator fcapulæ. From the tranfverfe Into the upper angle To move the fcapula proceffes of the four of the fcapula. forwards and upuppermoft vertebre colli.
6. Serratus fuperior pofticus.
7. Splenius (F).

From the lower part Into the $2 \mathrm{~d}, 3 \mathrm{~d}$, and To expand the thoof the ligamentum qth ribs. rax. colli, the fpinous procefs of the lowermoft cervical vertebra, and of the two fuperior dorfal vertebre. -
From the fpinous pronito the tranfverfe To move the head ceffes of the four or five uppermoft vertebre of the back, and of the lowermoft cervical vertebra. proceffes of the two backwards. firft cervical vertebrex, the upper and back part of the maftoid procefs, and a ridge on the os occipitis.
8. Complexus (c). From the tranfverfe Into the os occipitis. To draw the head proceffes of the four backwards. or five uppermoft dorfal, and of the fix lowermoft cervical vertebræ.
9. Trachelo-maftoi- From the traniverfe Into the maftoid pro- To draw the head deus (H).
proceffes of the firtt cefs. backwards. dorfal vertebra, and four or five of the lowermoft, cervical vertebre.
10. Rectus capitis po- From the fpinous pro- Into the os occipitis. To extend the head fticus major. cefs of the fecond cervical vertehra.
Ir. Rectus capitis po-From the firft verte- Into the os occipitis. To affift the rectus
ficus minor. bra of the neck. major.
12. Obliquus fuperior From the tranfverfe Into the os occipitis. To draw the head capitis. procefs of the firft cervical vertebra.
13. Obliquus inferior From the finous pro- Into the tranfverfe To draw the face tocapitis. cefs of the fecond procefs of the firft cervical vertebra. cervical vertebra. wards the fhoulder, and to move the firft
vertebra upon the fecond.
$4 X$
(F) According to fome writers, this mufcle has gotten its name from its refemblance to the fpleen; others derive it from \int_{p} leniunn \int_{p} lint.
(c) So named on account of its complicated ftricturc.
(H) So named from its origin from the neck (τ paixnnors) and its infertion into the maftoid procefs.

Nanze.

Origin.

From Infertion. the back part Into the lower edge 'To draw the ribs of the os facram, of each rib. fpine of the ilium, fpinous procefles and roots of the tranfverfe proceffes of the vertebræ of the loins. downwards, move the body upon its axis, affift in execting the trunk, and turn the neck backwards, or to one fide.
15. Longiffimas dor: The fame as that of Into the tranferfe To ftretch the verte$f_{1}(K)$. the facro-lumbalis. proceffes of the dor- bræ of the back, fal vertebræ. and keep the trunk erect.
16. Spinalis dorfi. From the fpinous pro- Into the fpinous pro- To extend the verte-
ceffes of the uppermoft lumbar and lowermoft dorfal vertebræ.
5. Semi-fpinalis dor- From the tranfverfe fi.
procefles of the 7 th, 8th, gth, and Ioth vertebræ of the back. ceffes of the nine bre. fuperior dorfal vertebræ.

Into the fpinous proceffes of the four uppermoft dorfal, and lowermont of the cervical vertebræ.
18. Multifidus Spi- From the os facrum, Into the fpinous pro- To extend the back
næ (L). ilium, oblique and tranfverfe proceffes of the lumbar vertebre, tranfverfe procelles of the dorfal, and four of the cervical vertebræ.
19. Semi-finalis col- From the tranfverfe li. proceffes of the five or fix nppermoft dorfal vertebræ.
ceffes of the limmbar, dorfal, and fix of the cervical vertebre. and draw it backwards, or to one fide.

Te extend the fpine obliqnely backwards.

Into the finous pro- To ftretch the neck ceffes of the 2 d , obliquely backwards. 3 d , 4 th, 5 th, and 6th cervical ver- tebræ.
20. Scalenus (M). From the tranfverfe Into the upper and To move the neck proceffes of the five outer part of the forwards, or to one inferior cervical firft andfecond ribs. fide. vertebræ.
21. Inter-
(1) Several thin fafciculi of flefly fibres arife from the lower ribs, and terminate in the inner fide of this mufcle. Steno names them mafouli ad facro lumbalem accefforii. The facro-lnmbalis likewife fends off a fle hhy flip from its upper part, which by Douglas and Albinus is defcribed as a diftinct mufcle, under the name of cervicalis defcendens. Morgagni has very properly confidered it as a part of the facro-lumbalis.
(k) At the upper part of this mufcle a broad thin layer of fle fhy fibres is found crofing, and intimately adhering to it. This portion, which is defcribed by Albinns, under the name of tranfuerfalis cervicis, may very properly be confidered as an appendage to the longiflimus dorfi. It arifes from the tranfverfe procefies of the five or fix fuperior dorfal vertebræ, and is inferted into the tranfverfe proceffes of the fix inferior cervical vertebre. By means of this appendage the longiffimns dorfi may ferve to move the neck to one fide, or obliquely backwards.
(I) Anatomifts in general have unneceffarily multiplied the mufcles of the finine. Albinus has the merit of laving introduced greater fimplicity into this part of myology. Under the name of multifidus Spince, he has very properly included thofe portions of inufcular flefh intermixed with tendinous fibres, fituated clofe to the back part of the fpine, and which are defcribed by Longlas mider the namcs of tranfoerfales coli, dor f, - lamborzun.
(m) The ancients gave it this name from its refemblance to an irregular triangle (oxannves). It conifits of three flefly portions. The antericr one affords a paffage to the axillary artery, and between this and the midale portion we find the nerves going to the upper extremities. The middle is in part covered by the poferior fortion, which is the longett and thinneft of the three.

Name.

21. Inter-fpinalis (N). From the upper part Into the under part of of each of the fpinous procefles of the fix inferior cervical vertebræ.
22. Inter-tranfverfa- From the upper part In les (o).

Muscles within the cavity of the abdomen, on the anterior and lateral parts of the fpine,

1. Pfoas parvus (P). From the fides and In tranfverfe proceffes of the uppermoft lumbar vertebra, and fometimes of the lowermof dorfal vertebra.
2. Pfoas magnus. From the bodies and Into the os femoris, a To bend the thigh tranfverfe proceffes of the laft dorfal, and all the lumbar vertebre.
3. Iliacus internus. From the inner lip, In common with the To affift the proas hollow part, and pfoas magnus. magnus. edge of the os ilium.
4. Quadratus lumbo- From the pofterior Into the tranfverfe To fupport the fpine, rum (e). part of the fpinc of the ilium.
each of the fpinous proceffes of the vertebre above.

Uffe.
prow the spinolis proceffes towards each other.
of cach of the tranfverfe procelles of the vertebre.

Into the under part of
each of the tranfverfe procefles of the vertebræ above.
verfe proceffes towards each other.
little below the tro- forwards. chanter minor.
pelvis, at the junc- wards. tion of the os pubis with the ilium. proceffes of the four or to draw it to onc uppermoft lumbar fide. vertebre, the inferior edge of the laft rib, and the fide of the lowermolt dorfal vertebra.
5. Coccygrus. From the pofterine Into the lower part To draw the os cocand inner edge of the fpine of the ifchium.
of the os facrom, and almoft the whole length of the os coccygis latterally.
cygis forwards and inwards (R)
la and upper part
of the os humeri,
I. Deltoides (s).
2. Supra-fpinatus.

From the clavicle, Into the anterior and proceflis acromion, middle part of the and fine of the os humeri. fcapula.
From the bafis, fpine, Into a large tuberofi- To raife the arm. and upper cofta of the fcapula.
ty at the head of the os humeri.

4 X 2
3. Infra-
(N) In the generality of anatomical books we find thefe mufcles divided into inter-fpinalis cervicis, dorfi, and lumborum, but we do not find any fuch mufcles either in the loins or back.
(o) Thefe mufcles are to be found only in the neck and loins; which have been defcribed, as the inter-tranf. verfales dorfi being rather finall tendons than mufcles.
(P) This and the following pair of mufcles derive their name of pfoas from foa, lumburs, on account of their fituation at the anterior part of the loins.
(e) So called from its frape, which is that of an irregular fquale.
(R) Some of the fibres of this mufle are united with thofe of the levator ani, fo that it affift in clofing the lower part of the pelvis.
(s) So naned from its fitopofed refemblance to the Greek Δ reverfed.

Origin.
From the bafe and Into the uppertion. and To roll the os humeri 3. Infra-fininatus. From the bafe and Into the upper and To roll the os humeri $\underbrace{\text { Murcls. }}$, fpine of the fcapu- middle part of the outwards. la. tuberofity.
4. Teres minor (T) From the inferior co- Into the lower part of To affif the infra fpi-
5. Teres major.
6. Subfcapularis.
7. Coraco-brachialis (U)

Muscies on the os
humeri, - - I. Biceps flexor cubi- By fta of the fcapula. the tuberofity. natus.
From the inferior Into the ridge at the To affift in the rotaangle, and inferior inner fide of the tory motion of the cofta of the fcapu- groove formed for arm. la. the long head of the biceps.
From the bafis, fupe- Into the upper part of To roll the arm inrior and inferior co- a fmall tuberofity at wards. fta of the fcapula. the head of the os humeri.
From the coracoid Into the middle and To roll the arm forprocefs of the fca- inner fide of the os wards and upwards. pula. humeri.
ti.
from the coracoid procefs, and the other, or long head, from the upper and outer edge of the glenoid cavity of the fcapula.
2. Brachialisinternus. From the os humeri, below, and at each fide of the tendon of the deltoides.
3. Triceps extenfor by three heads: the Into of the upper and To extend the fore-
the upper end of the radius.
nito a fmall tuberofity To affift in bending at the fore part of the forc-arm. the coronoid pro-
cubiti.

1. Supinator longus. firf, from the inferior cofta of the fcapula; the fecond, from the upper and outer part of the os humeri; and the third, from the back part of that bonc.

From the outer ridge andanterior furface its ftyloid procefs. the palm of the of the os humeri, a hand upwards. little above its outer condyle.
2. Extenfor carpi ra- Im
dialis longus. the origin of the nator longus.

Into the upper part To extend the wrift. of the metacarpal bone of the forefinger.
3. Extenfor carpi ra- From the outer and Into the upper part To affif the extenfor dialis brevis. lower part of the outer condyle of the os humeri, and the upper part of the radius.
4. Extenfor digitorum From the outer con- Into the back part of Toextend thefingers. communis.
dyle of the os hunieri.
of the metacaryal longus.
bone of the middle
finger.
outer part of the arm. olecranon.

Name.
 Origin.

U'fe.
5. Extenfor minimi From the outer con- Into the bones of the To extend the litule digiti. dyle of the os hu- little finger. $\begin{aligned} & \text { meri. }\end{aligned}$
6. Extenfor carpi ul- From the outer con- Into the metacarpal To affift in extending naris. dyle of the os humeri. bone of the little the wrift. finger.
7. Anconæus (v). From the outer con-Into lhe outer edge To ex:cnd the fore dyle of the os hu- of the ulna. anm. meri.
8. Flexor carpi ulna. From the inner con- Into the os piliforme. To affit in bending ris. dyle of the os humeri, and antcrior edge of the olccranon (w).
9. Palmaris longtis. From the inner con- Into the internal an- To bend the liand. dyle of the os hu- nular ligament, and meri. aponcurofis palmaris (x).
IO. Flcxor carpi ra- From the inner con- Into the metacarpal To bend the hand. dialis. dyle of the os hu- bone of the fore meri. fincer.
Ir. Pronator radii From the outer con- Into the anterior and To roll the hand interes. dyle of the os hinmeri, and coronoid procefs of the ulna.
12. Flexor fibblimis From the inner conperforatus (y). dyle of the os hameri, inner edge of the coronoid procefs of the ulna, and upper and anterior part of the radius.
13. Supinator radii From the outer conbrevis. dyle of the os humeri, and pofterior furface and outer edge of the ulna.
14. Abductor polli- From the middle and cis longus. back part of the pollicis.
(v) So called from a x cov, cubitus.
(w) Between the two origins of this mufcle we find the ulnor-ncrye going to the fore arm.
(x) The aponeurofis palmaris is a tendinoms membrane that extends over the palm of the hand. Some anatonifts have fuppofed it to be a production of the tendon of this mufele, bit without fufficient grounds; for in fome fubjects we find the palmaris longus inferted wholly into the annular liganent, fo as to be perfcetly difinet from this aponenrofis; and it now and then happens, that no palmaris longus is to be fo:tnd, whereas this expanfion is never deficient.
(y) This mufcle is mamed perforatus, on acconnt of the four tendons in wheh it terminates, being perforated. by thofe of anothe: mufle, the perforans.
convex edge of the wards. radins near its middle.
Into the fecond bone To bend the fecond ${ }_{1}$ of each finger.
nto the anterior, in- To roll the radias ner, and upper part outwards. of the radius.
ulna, interoffeous ligament, and radius.
15. Extenfor minor From the back part Into the convex part To extend the fecond pollicis. of theulna, andin- of the fecond bone bone of the thumb teroffeous ligament of the thumb. obliquely outwards. and radius.
16. Extenfor major From the back of the Into the third and To fretch the thumb

I7. Indicator. From the middle of Into the metacarpal To extend the forethe ulna. bone of the fore- finger. finger.

I8 Flexor:
By two tendons into To ftretch the firf the os trapezium, bone of the thumb and firft bone of outwards. the thumb. of the fecond bone ulna and interoffc- laft bone of the obliquely back-
feous ligament. pollicis. fore part of the the thumb. fore pa
20. Pronator radii From the inner and Into the radius, op- To roll the radius inquadratus. lower part of the pofite to its origin. wards, and of courfe ulna. to affilt in the pro- nation of the hand.
Musceeson thehand, I. Lumbricales (z). From the tendons of Into the tendons of To bend the firft, and the perforans. the extenfor digitorum commusis.
to extend the two laft joints of the fingers (A).
2. Abductor brevis From the fore part Into the outer fide of To move the thumb pollicis. of the internal an- the $2 d$ bone of the from the fingers. nular ligament, os thumb, near its fcaphoides, and one root. of the tendons of the abductor longus pollicis.
3. Opponens pollicis. From the inner and Into the firft bone of To move the thumb anterior part of the the thumb. inwards, and to turn internal annular ligament, and from the os fcaphoides.
4. Flexor brevis pol- From the os trapezoi- Into the offa fefamoi- To bend the fecond licis. des, internal annudea and fecond joint of the thumb. lar ligament, os bone of the thumb. magnum, and os unciforme.
5. Abductor pollicis. From the metacarpal Into the bafis of the To move the thumb bone of the middle fecond bone of the towards the fingers. finger. thumb.
6. Abductor indices. From the inner frde Into the firft bone of Tomove the fore finof the firft bone of the fore finger po- ger towards the the thumb, and from the os trapeIteriorly. thumb. zium.
7. Palmaris brevis. From the internal an- Into the os pififorme, To contract the palm nularligament, and and the 代in cover- of the hand. aponcurofis palma- ing the abductor ris. minimi digiti.
8. Abductor minimi From the internalan- Into the fide of the To draw the little digiti. nular ligament and firft bone of the fingerfromthereft. os pififorme. little finger.
9. Flexor parvus mi- From the os uncifor- Into the firft bone of To bend the little finnimi digiti. meand internal annular ligament.
ro. Abductor meta- From the os uncifor- Into the metacarpal To move that bone carpi minimidigiti. meandinternalan bone of the little towards the reft. nular ligament. finger.
II. Interofei interni. Situated between the Into the roots of the To extend the fingers metacarpal bones. fingers. and move them towards the thumb (B).
12. Interoffei
(z) So named from their being fhaped fomewhat like the lumbricns or earth-worm.
(A) Fallopius was the firft who remarked the two oppofite ufes of this mufcle. Their extending power is owing to their connection with the extenfor communis.
(в) The third interoffeus internus (for there are four of the externi and three of the interni) differs from the reft in drawing the middle finger from the thumb.

Name. Origiz. Infertion.

UJe.
12. Interoffei externi. Situated between the Into the roots of the To extend the finmetacarpal bones fingers. gers; but the firft on the back of the draws the middle hand.
draws the middle
finger invards, the fecond draws it out- wards, and the third draws the ring finger inwards.
Muscies at the back part of the pelvis, and upper part of the thigh, - - I

- Glutwus (c) max- From the fine of the Into the upper part To extend the thigh imus. ilium, pofterior facro ifchiatic ligaof the linea afpera and draw it outof the os femoris. wards. ments, os facrum, and os occygis.

2. Glutæus medius. $\begin{gathered}\text { From the fine and In } \\ \text { fuperior furface of }\end{gathered}$ the ilium.
back part of the great trochanter of the os femoris.

To draw the thigh outwards and a little backwards, and when it is bended, to roll it.
Into the upper and To affift the former. face of the ilium anterior part of the and the border of great trochanter. its great niche.
4. Pyriformis (D). From the anterior Into a cavity at the To roll the thigh outpart of the os fa- root of the trochan- wards. crum. ter major.
5. Gemini (E). By two portions, one Into the fame cavity To roll the thigh outfrom the outer fur- as the pyriformis. wards, and likewife face of the fpine to confine the tenof the ifchium ; don of the obturathe other from the tuberofity of the ifchium and pofterior facro-ifchiatic ligament.
6. Obturatorinternus. From the fuperior Into the fame cavity To roll the thigh outhalf of the inner with the former. wards. border of the foramen thyroideum.
7. Quadratus (F) fe- From the tuberofity Into a ridge between To move the thigh moris.
the trochanter ma- outwards. jor and trochanter minor.

$$
\begin{aligned}
& \text { (c), on the thigh } \\
& \begin{array}{l}
\text { I. Biceps flexor cru- By two heads; one Into the upper and To bend the leg. } \\
\text { ris. } \\
\text { from the ettberofity back part of the fi- } \\
\text { of the ifchium, }
\end{array} \text { bula }(\mathbf{H}) \text {. }
\end{aligned}
$$

(c) From $\gamma \lambda 8$ ros, nates.
(D) So nancd from its pear-like flape.
(E) The two portions of this mufcle having becn defcribed as two ditinet mufcles by fome anatomifts, have occafioned it to be named gemini. The tendon of the obturator internus runs between thefe two portions.
(F) This mufcle is not of the fquare fhape its name would feem to indicate.
(c) The mufcles of the leg and thigh are covered by a broad tendinous mombrane called fafcia lata, that furrounds then in the manner of a fheath. It is fent off from the tendons of the glatei and other mufcles, and dipy ing doin between the mufcles it covers, adheres to the linea aspera, and fricading over the joint of the knee, grahnally difappears on the leg. It is thickeft on the infide of the thigh.
(n) The tendon of this mufcle forms the outer ham-fing.
linea afpera near the infertion of the gluteus maximus.
2. Semitendin
3. $\begin{aligned} & \text { Semi-me } \\ & \text { fus (I). } \\ & \text { 4. Tenfor vag } \\ & \text { moris. }\end{aligned}$
5. Sartorius.
6. Rectus.
7. Gracilis.
bia.
o the upper and out- To extend the leg. er part of the patella.
9. Vaftus internus. From the inner edge Into the upper and To extend the leg. of the linea afpera, inner part of the beginning between the fore-part of the os femoris and the root of the leffer trochanter.
10. Cruræus (M). From the outer and Into the upper part of To extend the leg. anterior part of the the patella. leffer troclanter.
II. Pectinalis. From the anterior Into the upper and To draw thethighinedge of the os pu- fore part of the li- wards, upwards, lis, or pectinis, as nea afpera. it is fometimes called.
and to roll it a little outwards.
(1) So named on account of its origin, which is by a broad flat tendon three inches long.
(к) Spigelius was the firf who gave this the name of fartorius, or the taylor's mufcle, from its ufe in croffing the legs.
(I) The vaftus externus, vafus internus, and cruræus, are fo intimately comnected with each other, that fome anatomifts have been induced to confider them as a triceps, or fingie mufcle with threc heads.
(m) Under the crurens we fometimes meet with two fmall mufcles, to which Albinus has given the name of fub-crurai. They terminate on each fide of the patella, and prevent the capfular ligament from being pinched. When they are wanting, which is very often the cafe, fome of the fibres of the crurcus are found adhering to the capfula.
of the Mufcles. 1

Nane.
12. Abductor longus From the upper and Near the middle and femoris (N). fore part of the os back part of the lipubis. nea afpera.
13. Abductor brevis From the fore part of Into the inner and femoris. the ramus of the os pubis.
upper part of the linea afpera.
14. Abductor mag- From the lower and Into the whole length nus femoris. fore part of the ra- of the linea afpera. mus of the os plubis.
15. Obturator exter- From part of the ob- Into the os femeris
nus. turator ligament, and the inner half of the circumference of the foramen thyroideum.
Muscies on the leg, I. Gaftrocnemius (o) By two lieads; one externus. from the inner condyle, the other from the outer condyle of the os femoris.
2. Gaftrocnemius (p) By two heads; one internus. from the back part of the head of the fibula, the other from the upper and back part of the tibia.
3. Plantaris (e)
4. Popliteus (R)

From the upper and pofterior part of the outer condyle of the os femoris.
From the outer con- In dyle of the thigh. near the root of the great trochanter.

By a great round ten- To extend the foot. don, common to this and the following mufcle.
By a large tendon (the tendo achillis) common to this and the former mufcle, into the lower and back part of the os calcis.
Into the infide of the To affift in extending back part of the os the foot. calcis.

Into the upper and inner part of the tibia.
5. Flexor longus digi- From the upper and By four tendons, torum pedis (s) inner part of the tibia.

To affift in bending the leg and rolling it inwards.
To bend the laft joint of the toe.
which, after paffing through the perforations in thofe of the flexor digitorum brevis, are inferted into the laft bone of all the toes except the great toe.
6. Flexor longus pol- From the back part, Into the laft bone of T_{θ} bend the great licis pedis.
and a little below the great toe. the head of the fibula.
(N) This and the two following mufcles have been ufually, but improperly, confidered as forming a fingle mufcle with three heads, and on that account named triceps femoris.
(o) Taspoкynuta, fura, " the calf of the leg."
(P) This mufcle is by fome anatomifts named foleus, on account of its being fhaped like the fole-fifh.
(e) This mufcle has gotten the name of plantaris, from its being fuppofed to furnifh the aponeurofis that covers the fole of the foot; but it does not in the leaft contribute to the formation of that tendinous expanfion.
(r) So called on account of its fituation at the ham (poples).
(s) This mufcle, about the middle of the foot, unites with a flefhy mafs, which, froin its having firft been defcribed by Sylvius, is ufially called maffa carnea Jacobi Syivii.

Name. Origin. Infection.
Use.
of the 7. Tibialis pofticus. From the back part leto the inner and To move the foot in- Muscles. and outer edge of upper part of the wards. the tibia, and like- os naviculare and wife from the in- file of the os cuteroffeous ligament neiforme medium. and adjacent part of the fibula.
8. Peroneus longus. From the outer fine Into the metatarsal To move the foot outof the head of the bone of the great wards. tibia, and alfo from toe. the upper, anterior, and outer part of the prone or fibula, to which it adheres for a confiderable way down.
9. Peroneus breves. From the outer and Into the metatarfal To affift the lift de-fore-part of the fr- bone of the little fcribed muffle. bull.
10. Extenfor longus From the upper, out- By four tendons into To extend the toes.
digitorum pedis. er, and fore part the first joint of the of the tibia, inter- faller toes. offeons ligament, and inner edge of the fibula.
11. Peroneustertius. From the fore-part Into the metatarfal To bend the foot. of the lower half bone of the little of the fibula, and toe. from the interoffeous ligament.
12. Tibialis anticus. From the upper and Into the os cunie- To bend the foot. fore part of the ti- forme internum. bia.
13. Extenfor proprius From the upper and Into the convex fur- To extend the great pollicis pedis. fore part of the ti- face of the bones of bia. the great toe.
Muscles on the foot, I. Extenfor breves di- From the upper and By four tendons; one To extend the toes. fording a paffage to thole of the flexor longus, are infarted into the fecong phalanx of each of the fall toes.
3. Abductor pollicis From the inner and In pedis. lower part of the os calces.
4. Abductor minimi- From the outer tuber- I digiti.
gitorum pedis. anterior part of the os calces.
2. Flexor brevis digi- From the lower part
forum pedis. of the os calcis.

By four tendons, which, after afof which joins the tendon of the externus longus pollicis, and the other three the tendons of the extenfor digitorum longus.
to the first joint of
the great toe.
Into the outer fide of the first joint of

To bend the second joint of the toes.
ale of the os calces, the root of the metatarfal bone of the little toe, and also from the aponeurodis plantaris. the little toe.

Name. 5. Lumbricales pedis. From the tendons of
the flexor longus 5. Lumbricales pedis. From the tendons of
the flexor longus digitorum pedis.

Infertion.
Ufe.
Of the
6. Flexor brevis pol- From the inferior and licis pedis. anterior part of the os calcis, and alfo from the inferior part of the os cuneiformeexternum.
7. Adductor pollicis From near the roots pedis. of the metatarfal bones of the $2 d$, 3 d , and 4 th toes.
nto the tendinous To draw the tocs in- $\underbrace{\text { Murdes. }}$ expanfion at the wards. upper part of the toes.
By two tendons into To bend the firft join: the firft joint of of the great toe. the great toe.
-

Into the outer os fe- To draw the great toe famoideum, or firft ncarer to the rest, joint of the great and alfo to bend it. toe.
8. Traniverfales pe-From the outer and Into the inner os fe- To contract the foot. dis. under part of the anterior end of the metatarfal bone of the little toe. famoideum, and anterior end of the metatarfal bone of the great toe.
9. Flexor brevis mi- From the bafis of the Into the firft joint of To bend the little toc. nimi digiti pedis. metatarfal bone of the little toe. the little toc.
10. Interoffei pedis Situated between the interni (T). metatarfal bones. $\overline{\mathrm{ni}}$ (U).

EXPLANATION of PLATES XXIII. and XXIV.

Plate XXIII.

Fig. i. The Muscles immediately under the common tegnments on the anterior part of the body are reprefented on the right fide ; and on the left fide the Muscies are feen which come in view when the exterior ones are taken away.

A, The frontal mufcle. B, The tendinous aponenrofis which joins it to the uccipital ; hence both named occipito-frontalis. C, Attolens aurem. D, The car. E, Anterior auris. F F, Orlitcularis palpebrarum. G, Levator labii fuperioris alæque nafi. H, Levator anguli oris. I, Zygomaticus minor. K, Zygomaticus major. L, Maffeter. M, Orbicnlaris oris. N, Depreffor labii inferioris. O, Depreffor anguli oris. P, Bnccinator. QQ, Platyfma myoides. RR, Ster-no-cleido-maftoidxus. S, Part of the trapezius. T, Part of the felleni.
Superior Extremity.-U, Deltoides. V, Pectoralis major. W, Part of the latiffimus dorfi. XX, Biceps flexor cnbiti. Y Y, Part of the brachialis externnis. Z. Z, The beginning of the tendinous aponenrofis (from the biceps), which is fpread over the mufcles of the fore-arm. a a, Its ftrong tendon inferted into the tubercle of the radius. b b, Part of the brachialis internus. c, Pronator radii teres. d, Flexor carpi radialis. e, Part of the flexor carpi ulnaris. f, Palmaris longus. g, Aponeurofis pal:maris. 3. Palmatis brevis. I, Liganentum carpi annnlarc. 2 2, Abduitor minimi digiti. Ih, Supinator radii longus.
i, The tendons of the thumb. k , Abductor pollicis.
1, Flexor pollicis longus. mm , The tendons of the flexor fublimis perforatus, profundus perforans, and lumbricales.- The theaths are entire in the right hand, -in the left cut open to fhow the tendons of the flexor profundus perforating the fublimis.

Muscles not referred to-in the left fuperior extre-mity.-n, Pcetoralis minor, feu ferratns anticus minor. o, The two heads of ($\mathrm{x} x$) the biceps. p, Coracobrachialis. q q, The long head of the triceps extenfor cubiti. r r, Tcres major. f f, Subfcapularis. t t, Extenfores radiales. u, Supinator brevis. v, The cut extremity of the pronator teres. w, Flexor fublimis perforatns. x, Part of the flexor profnndus. y, Flexor pollicis longns. z, Part of the flexor pollicis brevis. 4, Abductor minimi digiti. 5, The four lumbricales.
Trunk.-6, Serrated extremities of the ferratis anticus major. 77, Obliquus externus abdominis. 8 8, The linea alba. 9, The umbilicus. 10, Pyramidalis. II It, The fpermatic cord. On the left fide it is covered by the cremafter. 12 I2, Rectus abdominis. 13, Obliquus internus. 1414 , \&c. Intercoftal mufcles.
Inferior Extremities.-a a, The gracilis. bó, Parts of the triceps. $c c$, Pectialis. $d d$, Pfoas magnus. e e, lliacus internus. f, Part of the glutens medins. g, Part of the glutæus minimus. h, Cut extremity of the rectus cruris. $i i$, Vaftus externus, k, Tendon of the reetns cruris. 1/, Vaftus internus. $4 \mathrm{Y}_{2}$ * Sartorius
(T.) The interoffei interni are three in number ; their ufe is to draw the fimaller toes towards the great toe.
(v) The interofei cxterni are four in number; the firff ferves to move the fore-toe towards the great toc: the reft more the toes oatwards. All the interonfei afift ta extending the toes.

Of the Mufcles.

* Sartorius mufcle. ** Flefhy origin of the tenfor vaginæ fantoris or membranofus. Its tendinous aponeurofis covers (i) the vaftus externus in the right fide. $n n m$, Patclla. $n n$, Ligament or tendon from it to the tibia. 0 , Rectus cruris. p, Cruræus. q q, The tibia. $r r$, Part of the Gemellus or gantrocnemius externus.* $\iint \rho$, Part of the foleus or gaftrocnemius internus. t, Tibialis anticus. u, Tibialis pofticus. $v v$, Peronæi mufcles. $v v$, Extenfor longus digitorum pedis. $x x$, Extenfor longus pollicis pedis. y, Abductor pollicis pedis.
Fic. 2. The Muscles, Glands, \&c. of the Left Side of the face and neck, after the common Teguments and Platyfma myoides have beentaken off.
a, The frontal mufcle. b, Temporalis and tempoyal artery. c, Orbicularis palpebrarum. d, Levator labii fuperioris alæqui nafi. e, Levator anguli oris. f, Zygomaticus. g, depreffor labii inferioris. ll, Depreffor anguli oris. i, Buccinator. k, Maffeter. 11 , Parotid gland. m, Its duct. n, Sterno-cleidomaftoidæus. o, Part of the trapezius. p, Sternohyoidæus. q, Sterno-thyroidæus. r, Omo-hyoidæus. f, Levator fcapulæ. t t, Scaleni. u, Part of the fplenilus.
Fig. 3. The Muscles of the Face and Neck in view after the exterior ones are taken away.
a a, Cormgator fupercilii. b, Temporalis. c, Tendon of thic levator palpebre fuperioris. d, Tendon of the orbicularis palpebrarum. e, Maffeter. f, Buccinator. g, Levator anguli oris. h, Depreffor labii fuperioris alæque nafi. i, Orbicularis oris. k, Depreffor anguli oris. 1, Mufcles of the os hyoides. m, Ster-no-cleido-maftoidæus.

Fig. 4. Scme of the Muscees of the Os Hyoides and Submaxillary Gland.
a, Part of the maffeter mufcle. b, Pofterior head of the digrafic. c, Its anterior head. d d, Stcrnohyoidæns. e, Omo-hyoidæus. f, Stylo-hyoidæus. g, Submaxillary gland in fitu.

Fig. 5. The Submaxillary Gland and Duct.
a, Mufculus mylo-hyoidæus. b, Hyo-gloftus. c, Submaxillary gland cxtra fitu. d, Its duct.

Plate XXIV.

Fig. t. The Musclesimmediately under the common teguments on the pofterior part of the body, are reprefented in the right fide; and on the left frde the Muscees arc feen which come in view when the exterior ones are taken away.

Head.-A A, Occipito-frontalis. B, Attollens aurcm. C, Part of the orbicularis palpebrarum. 1), Maffeter. E, Pterygoidæus internus.

Trunk.-Right fide. HrF, Trapezius fall cacnllaris. $G G G G$, Latiffimus dorfi. H, Pare of the obliquus externus abdominis.

Trunk.-Lcfifide. I, Splenius. K, Part of the complexus. L, Levator fcapulæ. MI, Rhomboides. NN, Serratus pofticus inferior. O, Part of the longiffimus dorfi. P, Part of the facro-lumbalis. \bumpeq, Part of the femi-fpiralis dorfi. R, Part of the ferratus an-
ticus major. S, Part of the obliquus intermus abdominis.

Of the Superior Extremity.-Right fide. T, Deltoides U, Triceps extenfor cubiti. V, Supinator longus. WW, Extenfores carpi radialis longior and brevior. X X, Extenfor carpi ulnaris. Y Y, Extenfor digitorum communis. Z, Abductor indicis. I 23 , Extenfores pollicis.

Superior Extremity.-Left fide. a, Suprafpinatus. b, Infra-fpinatus. c, Teres minor. d, Teres major. e, Triceps extenfor cubiti. ff, Exterifores carpi radialcs. g, Supinator brevis. h, Indicator. I 2 3, Extenfores pollicis. i, Abductor minimi digiti. k, Interofei.

Inferior Extremity.-Right fide. 1, Glutrult maximus. m, Part of the Glutæns medius. n, Tenfor vaginæ femoris. o, Gracilis. p p, Abductor fenoris magnus. q, Part of the vaftus internus. r, Semimembranofins. s, Scmitendinofus. t, Long head of the biceps flexor cruris. u u, Gaftrocnemins externus feu gemellus. v, Tendo Achillis. w, Soleus feu gaftrocnemius internus. $x \times$, Pcronæus longus and brevis. y, Tendons of the fiexor longus digitorum pedis;-and under them * flexor brevis digitorum pedis. z, Abductor minimi digiti pedis.

Inferior Extremity.-Left fide. $m, n, 0, p, q$, $r, s, t, v, z v, x x, y, z$, Point the fame parts as in the right fide. a, Pyriformis. $b b$, Gemini. $c c$, Obturator internus. d, Ouadratus fcmoris. e, Coccygæus. f, The fhort head of the biceps flexor cruris. $g g$, Plantaris. h, Poplitæus. i, Flexor longus pollicis pedis.
Fig. 2. The Palm of the Left Hand after the conimon Teguments are removed, to fhow the Muscies of the Fingers.
a, Tendon of the flexor carpi radialis. b, Tendon of the flexor carpi ulnaris. c, Tendons of the flexor fublimis pcrforatus, profundus perforans and lumbricales. d, Abductor pollicis. e e, rlexor pollicis longus. f, Flexor pollicis brevis. g, Palmaris brevis. h, Abductor minimi digiti. i, Ligamentum carpiat1nulare. k, A probe put under the tendons of the flexor digitorum fublimis; which are perforated by 1 , the flexor digitorum profundus. m m m , Lumbricales. n , Abductor pollicis.
Fig. 3 A Forc-view of the foot and Tendons of the Flexores Digitorum.
a, Cut extremity of the tendo Achillis. b, Upper part of the aftragalus. c, Os calcis. d, Tendon of the tibialis anticus. c, Tendon of the extenfor pollicis longus. f, Tendon of the peronæus brevis. g, Tendons of the flexor digitorum longus, with the nonus Vefalii. hh, The whole of the flexor digitorum brevis.

Fig. 4. Muscies of the Anus.
a a, An ont line of the buttocks, and upper part of the thighs. b, The teftes contained in the ferotum. c c, Sphincter aui. d, Anus. e, Levator ani. ff, Erecor penis. g, Accelerator urinæ. h, Corpus cavernofim urethræ.

Fig. 5. Muscies of the Penis.
a a, b, d, e c, ff, h, point the fame as in fig. 4. c, Sphinster ani. of © Tranferfalis penis.

Part III. Of the ABDOMEN, or LOWER BELLY.

88. THE abdomen, or lower belly, extends from the lower extremity of the fternum, or the hollow, ufually called the pit of the ftomach, and more properly fcrobiculus cordis, to the lower part of the trunk.

It is diftinguifhed into three divifions called regions; of thefe the upper one, which is called the epigaftric region, begins immediately under the fternum, and extends to within two fingers breadth of the navel, where the middle or umbilical region begins, and reaches to the fame diftance below the navel. The third, which is called the bypogaftric, includes the reft of the abdomen, as far as the os pubis.

Each of thefe regions is fubdivided into three others; two of which compofe the fides, and the other the middle part of each region.

The middle part of the npper region is called epigaftrium, and its two fides hypochondria. The middle part of the next region is the umbilical region, properly fo called, and its two fides are the flanks, or iliac regions. Laftly, the middle part of the lower region retains the name of hypogaftriom, and its fides are called inguina or groins. The back part of the abdomen bears the name of lumbar region.

Thefe are the divifions of the lower belly, which arc ncceffary to be held in remembrance, as they frequently occur in furgical and anatomical writing. We will now proceed to examine the contents of the abdomen ; and after having pointed out the names and arrangement of the feveral vifcera contained in it, defrribe each of them feparately.

After laving removed the kin, adipofe membrane, and abdominal mufcles, we difcover the peritonæum or membrane that envelopes all the vifcera of the lower belly. This being opencd, the firft part that prefents itflf is the omentum or cawl, floating on the furface of the inteftines, which are likewife feen every where loofe and moift, and making a. great number of circumvolutions through the whole cavity of the abdomen. The fomach is placed in the epigaftrium, and under the fomach is the pancreas. The liver fills the right hypochondrium, and the fpleen is fituated in the left. The kidneys are feen about the middle of the lumbar region, and the urinary bladder and parts of generation are feated in the lower divilion of the belly.

Sect. I. Of the Peritoncuinl.

The peritonæum is a ftrong finple membrane, by which all the vifecra of the abdomen are furronnded, and in fome meafure fupported. Many anatomical writers, particularly Winfow, have defcribed it as being compofed of two diting menbranous laminæ; but their defe, tion fecms to be erroneous. What perthaps appeated to be a fecond lamina, being found to be fimply a cellular coat, which fencis off productions to the blood-veffels pafing ont of the abilominal cavity. The arta and vena cava lihewife dorive a
covering from the fame meinbrane, which feems to $b c$ a part of the cellular membrane we have already defcribed.

The peritonæum, by its productions and rcduplications, envelopes the greateft paft of the abdominal vifcera. It is foft, and capable of confiderable extenfion; and is kept fmooth and moift by a vapour, which is conftantly cxhaling from its inner furface, and is returned again into the circulation by the abforbents.

This moilture not only contributes to the foftnefs of the peritonæum, but pricvents the attrition, and other ill effeets which would otherwife probably be occafioned, by the motion of the vifcera upon each other.

When this fluid is fupplicd in too great a quantity, or the abforbents become incapable of carrying it off, it accumulates, and conftitutes an afcites or dropfy of the belly ; and when by any means the exhalation is difcontinued, the peritonæum thickens, becomes difeafed, and the vifcera arc fometimes found adhering to each other.

The peritonæum is not a very vafcular membrane. In a found ftate it feems to be cndued with little or no feeling, and the nerves that pals through it appear to bclong to the abdominal mufcies.

Sect. II. Of the Omentam.

THE omentum, epiploon, or cawl, is a double merrbrane, produced from the peritonzum. It is interlarded with fat, and adheres to the fomach, fpleen, duodenum, and colon; from thence hanging down loofe and floating on the furface of the inteftines. Its fize is different in different fubjests. In fome it defcends as low as the pelvis, and it is commonly longer at the lefft fide than the right.

This part, the fituation of which we have juf now deicribed, was the only one known to the ancients under the name of epiplcon; but at prefent we diftingnifn three omenta, viz. cmentum magnum colico gafricum, omentum farvuin be+atico gaftricum, and comentum colicum. They all agree in being formed of two very delicate laminæ, feparated by a thin layer of cellular membrane.

The omentum magnum colico gaftricum, of which we have already fpoken, derives its arteries from the frlenic and hepatic. Its veins terminate in the vena portw. Its ncrves, which are very few, come from the fplenic and hepatic plexus.

The onentum parvom hepatico gaftricim, abounds lefs with fat than the grat cpipioon. It begins at the upper pant of the dnodenum, extands along the leffer curvature of the fomach as far as the cofophagus, and termi...aies about the neck of the gall-bladder, and behind the left ligment of the liver, fo that it covers the luffer lobe; near the beginning of which wa may oblerve a fmail opening, firft defrithed by Winfon, through which the whole foucln nay cafty be diftent-

Of the ed with air (x). The veffels of the omentum parvum domen. r are derived chielly from the coronary flomachic arteries and veins.

The omentum colicum begins at the fore part of the cocum and right fide of the colon. It appears as a hollow conical appendage to thefe inteftines, and ufually terminates at the back of the omentum magnum. It feems to be nothing more than a membranous coat of the coecum and colon, affuming a conical fhape when diftended with air.

The ufes of the omentum are not yet fatisfactorily determined. Perhaps by its fottnefs and loofenefs it may ferve to prevent thofe adhefions of the abdominal vifcera, which have been found to take place when the fat of the omentum has been much wafted. Some authors lave fuppofed, that it affifts in the preparation of bile; but this idea is founded merely on conjecturc.

> Sect. III. Of the Siomach.

The fomach is a membranous and mufcular bag, in flape not unlike a bagpipe, lying acrofs the upper part of the abdomen, and inclining rather more to the left than the right fide.

It has two orifices, one of which reccives the end of the oefophagus, and is called the cardia, and fometimes the left and upper orifice of the ftomach; though its fituation is not much higher than the other, which is ftyled the right and inferior orifice, and nore commonly the pylorus; both thefe openings are more elevated than the body of the fomach.

The aliment paffes down the cefophagus into the ftomach through the cardia, and after having undergone the neceffary digeftion, paffes ont at the pylorus where the inteftinal canal commences.

The ftomach is compofed of four tunics or coats, which are fo intimately connected together that it requires no little dexterity in the anatomift to demonftrate them. The exterior one is membranous, being derived from the peritonæum. - The fecond is in mufcular tunic, compofed of flefhy fibres which are in the greateft number about the two orifices. -The third is called the nervous coat, and within this is the villous or velvet-like coat which compofes the infide of the itomach.

The two laft coats being more extenfive than the two firft, form the folds, whicls are obferved every where in the cavity of this vifus, and more particularly about the pylorus; where they feem to impede the too hafty exclufion of the aliment, making a confiderable plait, called valoula pylori.

The inner coat is conftantly moiftened by a mucus, which approaches to the nature of the faliva, and is called the gaftric juice; this liquor has been fuppofed to be fecreted by cortain minute glands (y) feated in the nervons tunic, whofe excretory ducts open on the furface of the villous coat.

O M Y.

The arteries of the ftomach called the gattric arte- of the ries are principally derived from the cæliac ; fome of $\underbrace{\text { Abdomen. }}$ its veins pafs to the fplenic, and others to the vena portæ ; and its nerves are chiefly from the eighth pait or par vagum.

The account given of the tunics of the fomach may be applied to the whole alimentary canal ; for both the oclophagus and inteftines are, like this vifcus, compofed of four coats.

Before we defcribe the courfe of the aliment and the ufcs of the ftomach, it will be neceffary to fpeak of other parts which affift in the procefs of digeftion.

SEct. IV. Of the Oefophagus.

THE œfophagus or gullet is a membranous and mufcular canal, extending from the bottom of the mouth to the upper orifice of the ftomach.-Its upper part where the aliment is received is flaped fomewlat like a funnel, and is called the pharynx.

From hence it runs down clofe to the bodies of the vertebræ as far as the diaphragm, in which therc is an opening through which it paffes, and then terminates in the ftomach about the eleventh or twelfth vertebra of the back.

The ofophagus is plentifully fupplied with arteries from the external carotid, bronchial, and fuperior intercoftal arteries; its veins empty themfelves into the vena azygos, internal jugular, and mammary veins, 3 c,

Its nerves are derived chiefly from the eighth pair.
We likewifc meet with a mncus in the oefophagus, which every whore lubricates its inner furface, and tends to affift in deglutition.-This mucus feems to be fecreted by very minute glands, like the mucus in other parts of the alimentary canal.

Sect. V. Of the Inteflines.

The intedtines form a canal, which is ufually fix times longer than the body to which it belongs. This canal extends from the pylorus, or inferior orifice of the ftomach, to the anus.

It will be eafily nnderftood, that a part of fuch great length muft neceffarily make many circumvolutions, to be confined with fo many other vifcera within the cavity of the lower belly.

Althongh the isteftines are in fact, as we lave obferved, only one long and extenfive canal, yet different parts have been diftinguifed by different names.

The inteftines arc firft diftinguillicd into two parts, one of which begins at the fomach, and is called the . thin or finall inteffines, from the fnall fize of the canal, when compared with the other part, which is called the large intefines, and includes the lower potion of the canal down to the anus.

Each of thefe parts has its fubdivifions. - The fmall
(x) This menbranous bag, though excedingly thin and tranfparent, is found capablc of fupporting mercu$x y$, thrown into it by the fame channel.
(y) Iteiftcr, fpeaking of thefe glands, very properly fays, "in forcis facilc, in bomine raro obfervantur ;" for although many anatomical writers have defcribed their appearance and figure, yct they co not frem to have been hitherto fatisfa\&orily demonftrated in the homan fomach; and the gaftric jnice is now more generally believed to be derived from the exhalent arteries of the fomach.

Of the inteftines being diftinguifhed into duodentm, jeju$\underbrace{\text { Abdomen, }}$ num, and ilimm, and the larger portion into coectim, colon, and rectum.

The fmall inteftines fill the middle and fore parts of the belly, while the large inteftines fill the fides and both the upper and lower parts of the cavity.

The duodenum, which is the firft of the fmall inteftines, is fo called, becaufe it is about 12 finches long. It begins at the pylorus and terminates in the jejunum, which is a part of the canal obferved to be ufually more empty than the other inteftines. - This appearance gives it its name, and likewife ferves to point out where it begrins.

The next divifion is the ilimm, which of iffelf exceeds the united length of the duodenum and jejunum, and las received its name from its numerous circumvolutions. The large circumvolution of the ilium covers the firft of the large inteftines called the $\operatorname{cocomn}(\mathrm{x})$, which feems properly to belong to the colon, being a kind of pouch of about four fingers in width, and nearly of the fame length, having exteriorly a little appendix, called appendix caci.

The coccum is placed in the cavity of the os ilium on the right fidc, and terminates in the colon, which is the largeft of all the inteftines.

This inteftine afcends by the right kidney to which it is attached, paffes under the hollow part of the liver, and the bottom of the ftomach, to the fipleen, to which it is likewife fecured, as it is alfo to the left kidncy; and from thence pafies down towards the os facrum, where, from its firaight courfe, the canal begins to take the name of rectum.

There are three ligamentous bands extending thro' the whole length of the colon, which, by being fhorter than its two inner coats, ferve to increale the plaits on the inner furface of this gut.

The anus which terminates the intefinum rectum, is furnifhed with three mufcles; one of thefe is compofed of circular fibres, and from its ufe in thutting the paffage of the anus is called fphineter ani.

The other two are the levatores ani, fo called, becaufe they elevate the anus after dejection. When thefe by palfy, or any other difeafe, lofe the power of contracting, the anus prolapfes; and when the fphincter is affected by fimilar canfes, the freces are voided involuntarily.

It has been already obferved, that the inteftinal canal is compofed of four tunics; but it remains to be remarked, that here, as in the ftomach, the two inner tifnics being more extenfive than the other two, form the plaits which are to be feen in the inner furface of the inteftines, and are called valvalce conniventes.

Some authors liave conficiered thefe plaits as tending of the to retard the motion of the freces, in order to afiord Abdomet more time for the feparation of the chyle; but there are others who attribute to them a different ufe: they contend, that thefe valves, by being naturally inclined downwards, cannot impede the defcent of the freces, but that they are intended to prevent their return upwards.

They are probably deftined for both thefe ufes; for although thefe folds incline to their lower fide, yet the inequalities they occafion in the canal are fufficient to retard, in fome meafure, the progreflive motion of the fæces, and to afford a greater furface for the abforption of chyle, and their natural pofition feems to oppofe itfelf to the return of the aliment.

Befides thefe valvulce conniventes, there is one more confiderable than the rent, called the valve of the colon; which is found at that part of the canal where the inteftinum ilium is joincd to the colon. This valve permits the alimentary pulp to pafs downwards, but ferves to prevent its return upwards; and it is by this valve, that glyfters are prevented froin paffing into the fmall inteftines (Y).

Of the little vermiform appendix of the cœocum, it will be fufficient to fay, that its ufes have never yet been afcertained. In birds we ineet with two of thefe appendices.

The inteftines are lubricated by a conftant fupply of mucus, which is probably fecreted by very minute follicles (z). This mucus promotes the defcent of the alimentary pulp, and in fome meafure defends the inner furface of the inteftines from the irritation to whicli it woald, perliaps, otherwife be continnally expofed from the alinnent; and which, when in a certain degree, excites a painful diforder called colic, a name given to the difeafe, becaufe its moft ufual feat is in the intertinum colon.

The inteftines are likewife frequently diftended with air, and this diftenfon fometimes occafions pain, and. conflitutes the flatulent colic.

The arteries of the inteftines are continuations of the mefenteric arteries, which are derived in two confiderable branches from the aorta. - The redundant blood is carried back into the vena portarum.

In the recum the veins are called homorthoidal, and are there diftinguified into internal and external: tio firft are branches of the inferior mefenteric vein, but the latter pafs into other veins. Sometimes thefe veins are diftended with blood from obftustions, from weaknefs of their conts, or from other caufes, and what we call the hamorrhoids takes place. In this difeafe they are fometimes ruptured; and the difcharge of blond which
(x) Anatomifts have differed with refpect to this divifion of the inteftines. - The method bere followed is now generally adopted; but there are authors who allow the name of cacum only to the little appendix, which has likewife been called the vermiform appendix, from its refemblance to a worm in lize and length.
(y) This is not invariably the cafc, for the contents of a glyfer have been found net only to reach the fimall inteftines, but to be voided at the mouth. Such inftances, however, are nei common.
(z) Some writers have diftinguifed thefe glands into miliary, lenticular, ze.-Branner and Peyer were the firft anatomifts who defcribed the glands of the inteftines, and their defcriptions were chiefly tiken from animals, thefe glandular appearances not feeming to have been hitherto fatisfactorily pointed out in the human fib-joct.-It is now pretty generally belicved, that the mucus which cyerywhere lubricates the alimentary canal, is cxhaled from the minute cnds of arteries; and that thefc extremities firtopen imo a holion vefocle, from whence the depofited juice of feveral branches flows ont throngh ouc common-orifice.

Of the

 1 b Jonven.which confequently follows, has probably occafioned them to be called hanorrhoidal veins.

The nerves of the inteltines are derived from the eighth pair.

> SEct. VI. Of the IMefentery.

The name of the mofentery implies its fituation amidft the inteftines. It is in fact a part of the peritonæuin, being a reduplication (A) of that membrane from cach fide of the lumbar vertebre, to which it is firmly attached, fo that it is formed of two laminæ, comected to each other by cellular membrane.

The inteftiues, in their different circumvolutions, form a great number of arches, and the mefentery accompanies them through all thefe turns; but by being attached only to the hollow part of each arch, it is found to havc only a third of the extent of the inteftines.

That part of this membrane which accompanies she fmall inteftines is the mefentery, properly fo called; but thofe parts of it which are attached to the colon and rectum are diftinguifhed by the names of mefo-colon and me fo-rectum.

Thicrc are many conglobate glands difperfed through this double membrane, through which the lacteals and lymphatics paifs in their way to the thoracic duct. The blozd-veffels of the inefentery were defcribed in fpeaking of the inteftines.

This membrane, by its attachment to the vertebræ, ferves to keep the inteftines in their natural fituation. The idea tifually formed of the colic called miferere, is perfectly erroneous; it being impoffible that the inteftines can be twiftee, as many fuppofe they are, in that difeafe, their attachment to the mefentery effectually preventing fuch an accident-but a difarrangement fometimes takes place in the inteftinal canal itfelf, which is productive of difagreeablc and fometimes fatal confequences.-This is by an introfifception of the inteftine, an idea of which may be eafily formed, by taking the finger of a glove, and involving one part of it within the other.

If inflammation takes place, the fricture in this cafe is increafed, and the periftaltic motion of the intertines (by which is meant the progreflive motion of the feces downwards) is inverted, and what is called the iliac pafion takes place. The fame effects may be occafioned by a defcent of the inteftine, or of the omentum either with it or by itfelf, and thus conftituting what is called an bernia rupture; a term by which ingeneral is meant the falling down or protrufion of any part of the inteftine or omentum, which ouglit naturally to be contained within the cavity of the belly.

To convey an idea of the manner in which fuch a
of the defcent takes place, it will be neceffary to olferve, that $\underbrace{\text { Abdomen. }}$ the lower edge of the tendon of the mufculus obliquas externus, is ftretched from the fore-part of the os ilium or haunch-bone of the os pubis, and conftitutes what is called Poupart's or Fallopius's ligament, forming an opening, through whicll pafs the great crural artcry and vein. Near the os pubis the fante tendinous fibres are feparated from each other, and form an opening on each fide, called the abdominal ring, through which the fpermatic veffels pafs in men, and the ligamenta uteri in women. In confequence of violent efforts, or perhaps of natural caufes, the inteftincs are found fometimes to pafs through thefe opcnings; but the peritonæum which inclofes them when in their natural cavity, fill continues to furround them cven in their defcent. This membrane does not become torn or laccrated by the violcnce, as might be eafily imagined; but its dilatibility enables it to pafs out with the vifcus, which it inclofes as it were in a bag, and thus forms what is called the hernial fac.

If the hernia be under Poupart's ligament, it is called fencral; if in the groin, inguinal (E); and foro$t a l$, if in the fcrotum. Different names are likewife given to the hernia as the contents of the fac differ, whether of omentum only or inteftine, or both :-but thefe definitions more properly belong to the province of furgery.

Sect. VII. Of the Pancreas.

The pancreas is a conglomerate gland placed behind the bottom of the fomach, towards the firft vertebra of the loins; flaped like a dog's tongue, with its point ftretched out towards the fplecn, and its other end extending towards the duodenum. It is about eight fingers breadth in length, two or three in width, and one in thicknefs.

This vifcus, which is of a yellowifh colour, fomewhat inclined to red, is covered with a membrane which it derives from the peritonæum. Its arteries, which are rather numerous than large, are derived chicfly from the fplenic and hepatic, and its veins pafs into the veins of the fame name.-Its nerves are derived from the intercoftal.
The many little glands of which it has been obferved the pancreas is compofed, all ferve to fccrete a liquor called the pancreatic juice, which in its colonr, confiftence, and ether properties, does not feem to differ from the faliva. Each of thefe glands fends out a little excretory duct, which, uniting with others, help to form larger ducts; and all thefe at laft terminate in one common excretory duct (firft difcovered by Virtfungus
(A) He who only reads of the reduplication of membranes, will perhaps not eafily underftand how the peritonæum and pleura are reflected over the vifcera in their feveral cavities; for one of thefe ferves the fame purpofes in the thorax that the other does in the abdomen. This difpofition, for the difcovery of which we are indebted to modern anatomifts, confitutes a curious part of anatomical knowledge : but the ftudent, unaided by experience, and affifted only by what the limits of this work would permit us to fay on the occafion, wonld probably imbibe only confufcd ideas of the matter; and it will perfectly anfwer the prefent purpofe, if he coniiders the mefentery as a membrane attached by one of its fides to the lumbar vertebre, and by the other to the inteftines.
(в) The hernia congenita will be confidered with the male organs of generation, with which it is intimately connected.

Of the in 1642 , which runs through the middle of the gland, from the mafs of blood, in a manner of which mention Abdomen. and is now nfually called ductus pancreaticus Virtfungi. This canal opens into the inteftinum duodenum, fometimes by the fame orifice with the biliary duet, and fometimes by a diftinet opening. The liquor it difcharges being of a mild and infipid nature, ferves to dilute the alimentary pulp, and to incorporate it more eafily with the bile.

Sect. VIII. Of the Liver.

96. The liver is a vifcus of confiderable fize, and of a reddifh colour ; convex fuperiorly and anteriorly where it is placed under the ribs and diaphragm, and of an unequal furface pofteriorly. It is chiefly fituated in the right hypochondrium, and under the falfe ribs; bit it likewife extends into the epigaftric region, where it borders upon the ftomach. It is covered by a production of the peritonæum, which ferves to artach it by three of its reduplications to the falie ribs. Thefe reduplications are called ligaments, though very different in their texture from what are called by the fame name in other parts of the body. The umbillical cord, too, which in the foetus is pervions, gradnally becomes a finple ligament after birth; and, by paffing to the liver, ferves likewife to fecure it in its fituation.

At the pofterior part of this organ where the umbillical veffels enter, it is found divided into two lobes. Of thele, the largeft is placed in the right hypochondrium ; the other, which covers part of the ftomach, is called the little lobe. All the veffels which go to the liver pafs in at the fiflure we have mentioned; and the production of the peritonæum, which invefts the liver, was defcribed by Gliffon, an Englifh anatomift, as accompanying them in their paffage, and furrounding them like a glove; hence this production has been commonly known by the name of cap fuia of Gliffon: but it appears to be chiefly a continuation of the cellular membrane which covers the vena porta ventralis.

The liver was confidered by the ancients as an organ deftined to prepare and perfect the blood; but later difcoveries have proved, that this opinion was wrong, and that the liver is a glandular fubftance formed for the fecretion of the bile.

The blood is conveyed to the liver by the hepatic artery and the vena porta. This is contrary to the mode of circulation in other parts, where veins only ferve to carry off the redundant blood: but in this vifcus the hepatic artery, which is derived from the cæliac, is principally deflined for its nomifhment; and the vena porta, which is formed by the union of the veins from moft of the abdominal vitcera, furnifhes the blood from which the bile is chiefly to be feparated; to that thefe two feries of veffels ferve very diftinct purpofes. The vena porta, as it is ramified through the liver, performs the office both of a rein and an artery; for like the former it returns the blood from the extremities of arteries, while as the latter it prepares it for fecretion.

The nerves of the liver are branches of the intercofal and par vagom. The bile, after being feparated
will be made in another place, is conveyed ont of this organ by very minute excretory ducts, called porijiliarii; thefe uniting together like the excretory ducts in the pancreas, gradually form larger ones, which at length terminate in a confiderable canal called ductus hepaticus.

Sect. IX. Of the Gall-bladder.

The gall-bladder is a little membranous bag, flaped like a pear, and attached to the pofterior and almoft inferior part of the great lobe of the liver.

It has two tunics; of which the exterior one is a prodaction of the peritonæum. The interior, orvillous coat, is fupplied with a mnicus that defends it from the acrimony of the bile. Thefe two coverings are intimately connected by means of cellular membrane, which from its firm gliftening appearance has generally becn fpoken of as a mufcular tunic.

The gall-bladder is fupplied with blood-veffels from the hepatic arteries. Thefe branches are called the cyftic arteries, and the cyftic veins carry back the blood.

Its nerves are derived from the fame origin as thofe of the liver.

The neck of the gall-bladder is continued in the form of a canal called ductus cyfticus, which foon inites with the ductus hepaticus we deferibed as the excretory duct of the liver; and forming one common canal, takes the name of duttus coledochus communis, through which both the cyftic and hepatic bile are difcharged into the duodenum. This canal opens into the inteftine in an obliquc direction, firf paffing through the exterior tunic, and then piercing the other coats after running between each of them a very little way. This oconomy ferves two ufeful purpofes;-to promote the difcharge of bile and to prevent its return.

The bile may be defined to be a natural liquid foap, of the bile. fomewhat unctuous and bitter, and of a yellowifh colour, which cafily mixes with water, oil, and vinous fpirits, and is capable of diffolving refiuous fubfances. From fome late experiments made by M Cadet*, it * Mem. de appears to be formed of an animal oil, combined with l'Acad. des the alkaline bafe of fca-falt, a falt of the nature of milk, and a calcareous earth which is flightly ferruginous.

Its definition feems fufficiently to point out the ufes for which it is intended (c). It blends the alimentary mafs, by dividing and attennating it ; corrects the too great difpofition to acefcency, which the aliment acquires in the ftomach; and, finally, by its acrimony, tends to excite the perifialtic motion of the intetines.

After what has been faid, it will be conceived that there are two forts of bile; one of which is derived immediately from the liver through the hepatic duef, and the other from the gall-bladder. Thefe two biles, however, do not effentially differ from each other. The hepatic bile indecd is milder, and more liquid that the cyitic, which is conftantly thicker and yellower;
(c) The ancicnts, who were not acguainted with the real ule of the liver, confidered the bile as an cricrementitions and ufelefs fluid.

Ofthe Abiomen.
and by being bitterer, feems to pofefs greater activity than the other.

Every body knows the fource of the hepatic bile, that it is fecreted from the mafs of blood b/ the liver; but the origin of the cyftic bile has occafioned no litite controverfy amongft anatomical writers. There are fome who contend, that it is feparated in the fubfance of the liver, from whence it pafies into the gall-bladder through particular vefiels. In deer, and in fome other quadrupeds, as well as in feveral birds and fifhes, there is an evident communication, by means of particular veffels, between the liver and the gall-bladder. Bianchi, Winflow, and others, have afferted the exiftence of fuch veffels in the human fubject, and na med them bepaticyliz ducts; but it is certain that no fuch ducts exif.-In obftrutions of the cyftic duet, the gallbladder has been found fhrivelled and empty: fo that we may confider the gall-bladder as a refervoir of hepatic bile; and that it is an eftablifhed faet, that the whole of the bile cortained in the rall-bladder is derived from the liver; that it patfes from the hepatic to the cyftic duct, and from that to the gall-bladder. The difference in the colour, confiftence, and tafte of the bile, is merely the confequence of fagnation and dbforption. When the fomach is diftended with aliment, this refervoir nndergoes a certain degree of compreffion, and the bile pafies oat into the inteftinal canal ; and in the efforts to vomit, the gall-bladder fcems to be conitantly affected, and at fuch times dicharges itfelf of its contents.

Sometimes the bile concretes in the gail-bladder, fo as to form what are called gall-fiones (D). When thefe concretions pafs into the cyftic dued, they fometimes occafion exquifite pain, by diftending the canal in their way to the duodenum; and by lodging in the ductus choledochas communis, and obftructing the courfe of the bile, this fluid will be abforbed, and by being carried back into the circulation occafion a temporary jaundice.

SEct.X. Of the Spleen.

The fpleen is a foft and fpongy vifcus, of a bluifh colonr, and about five or fix fingers breadth in length, and three in width, fituated in the left hypochondrium, between the fomach and the falfe ribs. That fide of it which is placed on the fide of the ribs is convex; and the other, which is turned toward the ftomach, is concave.

The fplenic artery, which is a branch from the creliac, fupplies this vifcus with blood, and a vein of the fame name carries it back into the vena porta.

Its nerves are derived from a particular plexus called the fplenic, which is formed by branches of the intercoftal nerve, and by the eightl pair, or par vagum.

The ancients, who fuppoied two forts of bile, con $\sqrt{1-}$ dered the fpleen as the receptacle of what they called atra
bilis. Havers, who wrote profefiedly on the bones, determined its ufe to be that of fecreting the fynovia; and the late Mr Hewfon imagined, that it concortred with the thymas and lymphatic glands of the body in forming the red globules of the blood. All thefe opinions feem to be equally fanciful. The want of an excretory date has occalioued the real ufe of this vifcus to be Itill doubtful. Perhaps the blood undergoes fome change in it, which may allift in the preparation of the bile. This is the opinion of the generality of modern plyfiologifts; and the great quantity of blood with whirli it is fupplied, together with the courfe of its veins into the vena porta, feem to render this notion probable.

Sect. XI. Of the Glandula Runales, Kidneys, and Ureters.

THe glandulæ renales, which were by the ancients fuppofed to fecrete the atra bilis, and by them named cappulce atrabilares, are two flat bodies of an irregnlar figure, one on each fide between the kidney and the a 2 rta.

In the fretus they are as large as the kidneys: but they do not increafe afterwards in proportion to thofe parts; and in adults and old people they are generally fonnd hrivelled, and mach wafted. They lave theib arterits and veins. Their arteries usually arife from the fplenic or the emalgent, and fometimes from the aorta; and their veins go to the neighbouring veins, or to the vena cava. Their nerves are branches of the intercoftal.

The ufe of thefe parts is not yet perfectly known. In the foetus the fecrecion of urine muft be in a very fmall quantity, and a part of the blood may perhaps then pafs through thefe cliannels, which in the adnlt is carried to the kidneys to fupply the matter of urine.

The kidneys are two in number, fituated one on the right and the other on the left fide in the lumbar region, between the laft falfe rib and the os ilium, by the fides of the vertebræ. Each kidney in its figure refembles a fort of bean, which from its thape is called kidney-bean. The concave part of each kidney is turned towards the aorta and vena c2va afcendens. They are furrounded by a good deal of fat, and receive a coat from the peritonzum; and when this is removed, a very fine membrane is fonnd invefting their fabfance and the veffels which ramify through them.

Each kidney has a confiderable artery and vein, which are called the emulgent. The artery is a branch from the aorta, and the vein paffes into the vena cava. Their nerves, which cvery where aecompany the bloodveffels, arife from a confiderable plexas, which is derived from the intercoftal.

In each kidney, which in the adult is of a pretty firm texture, there are three fibbtances to be diftinguifhed (E). The outer part is glandular or cortical, beyond
(D) Thefe concretions fometines remain in the gall-bladder withont caungr any uneafincfs. Dr Feberden relate;, that a gall-fone weighily two drams was fomd in the gall-biadler of the hate Lord Bath, though he had never complained of the jaundice, nor of any diforder which he conld attribute to that caufe. IVed. Tranf. Vol. ii.
(e) The kidneys in the foetis are diftinatly lobalated; bat in the adult they becone perfectly firm, finooth, and regular.
of the beyond this is the vafcular or tubular fubftance, and $\underbrace{\text { Abdomen. the inner part is papillary or membranous. }}$

It is in the cortical part of the kidncy that the fecretion is carried on; the mine being here received from the minute cxtremities of the capillary arterics, is conveyed ont of this cortical fubfance by an infinite number of tery finall cylindrical canals or exeretory veffels, which conftute the tubular part. Thefe tubes, as they approach the inner fubflance of the kidney, gradually unite together; and thus forming larger canals, at length terminate in ten or twalve little protuberances called papille, the orifices of which may: befcen without the affiftance of glaffes. Tliefe papill open into a fmall cavity or refervoir called the pelvis of the kidirey, and formed by a diftinet membranous bag which embraces the papilla. From this pelVis the urine is conveyed through a membranous canal which paffes out from the hollow fide of the kidney, a

The ureters are each about as large as a commont writing-pen. They are fomewhat curved in their courfe from the kidneys, like the letter f, and at length terminate in the ponterior and almoft inferior part of the bladder, at fome diftance from each other. They pals into the bladder in the fame manner as the ductus choledochus communis paffes into the intentinum duodenum, not by a direct paffage, but by an oblique courfe between the two coats; fo that the difcharge of urine into the bladder is promoted, whilft its return is prevented. Nor does this mode of fructure prevent the paffage of fluids only from the bladder into the ureters, but likewife air:-for air thrown into the bladder inflates it, and it continues to be diftended if a ligature is paffed round its neck; which feems to prove fufficiently that it cannot pals into the ureters.

Sect. XII. Of the Urinary Bladder.

The urinary bladder is a membranous and mufcular bag of an oblong roundifh fhape, fituated in the pelvis, between the os pubis and inteftinum rectum in men, and between the os pubis and uterus in women. Its upper and wideft part is ufually called the bottom, its narrow part the neck of the bladder; the former only is covered by the peritonxum.
The bladder is formed of three coats, connceted together by means of cellular membrane. The external or peritonæal, is only a partial one, covcring the upper and back part of the bladder. The middle, or mufcular coat, is compofed of irritable, and of courfe murcular fibres, which are moft collected around the neck of the bladder, but not fo as to form a diftinct mufcle, or fphineter, as the gencrality of anatomifts have hitherto fuppofed.

The inner coat, thongh much fmoother, has been faid to refemble the villous tunic of the inteftines, and like that is provided with a mncus, which defends it againt the acrimony of the urinc.
It will be eafily conccived from what has been faid, that the kidneys are two glandular bodies, thro' which a faline and excremcnatious fluid called urine is con-
is diftended in a cortain degrec, it excites in us a certain fonfation, which brings on as it were a voluntary contraction of the bladder to promote its difcharge. But this contraction is not cffceted by the mufcular fibres of the bladder alone: for all theabdominal mufcles contract in obedience to our will, and prefs downwards all the vifcera of the lower belly; and thele powers being ennited, at length overcome the refiftance of the fibres furrounding the neck of thic bladder, which dilates and affords a paffage to the urine throingly the urcthra.

The frequency of this evacuation depends o:n the quantity of urine fecreted; on the degree of acrimony if poffeffes; on the fize of the bladder, and on its degree of fenfibilizy:

The urine varics muclı in its colour and contents. Thefe varieties depend, on age, fex, climate, dict, and other circumnances. In infants it is generally a clear watcry fluid, without finell or taftc. As we advance in life, it acquires more colour and fmell, and becomes more impregnated with falts. In old pcople it becomes fill more acrid and fetid.

In a liealthy ftate it is nearly of a feraw colour. After being kept for fome time, it depofites a tartarous matter, which is found to be compofed chiefly of earth and falt, and foon incrufts the fides of the veficl in which it is contained. While this feparation is taking place, appearances like minute fibres or threads of a whitifn colour, may be feen in the middle of the urine, and an oily fcum obferved flating on its furface. So that the moft common appearances of the urine are fufficient to afcertain that it is a watery fubftance, impregnated with earthy, faline, and oily particles.

The mine is not always voided of the fame colour and confiftence ; for thefe are found to depend on the proportion of its vratery part to that of its other conftituent principles.-Its colonr and degree of fluidity feem to depend on the quantity of faline and inflammable particles contained in it: fo that an increafed proportion of thofe parts will conftantly give the urine a higher colour, and add to the quantity of fediment.

The variety in the appearance of the urine, depends on the nature and qiantity of folid and fuid aliment we take in ; and it is likewife occafioned by the different fate of the urinary vef!cls, by which we mean the channels through which it is feparated from the blood, and conveyed through the pelvis into the ureters. The caufes of calculous concretions in the urinary pafiages, are to be looked for in the natural conftitution of the body, mode of life, \&c.

It having becti obferved, that after drinking any light winc or Spa water, it very foon paffed off by urine, it has becn fuppofed by fome, that the urine is not altogether conveyed to the bladder by the ordinary courfe of circulation, but that there mun certainly cxif fome ocher fhorter means of communication, perhaps by certain veffels between the fomach and the bladder, or by a retrograde motion in the lymphatics. But it is certain, that if we open the belly of a dog, prefs out the urine from the bladder, pafs a ligature round the emulgent arterics, and then few up the abdomen, and give him even the moft diuretic liquor to drinle, the fomach and other channels will be diftend-
of the Abdinmen. fantly filtering from the mafs of hood.

Whice ouly a finall quantity of urine is collceted in the bladder, it evaites no kiod of meafiness; but when a greater quantity is accumulated, fo that the bladder

Of the $e d$ with it, but not a drop of urine will be found to Aidomen. have paffed into the bladder ; or the fame thing hap-
pens when a ligature is thrown round the two ureters. 'This experinent then feems to be a fufficient proof, that all the urine we evacuate, is conveyed to the kidneys through the emulgent arteries, in the manner we have defcribed.-It is truc, that wine and other liquors promote a fpeedy evacuation of urine : but the difcharge fcems to be merely the effect of the ftimulus they occafion ; by which the bladder and urinary parts are folicited to a more copious difcharge of the urine, which was before in the body, and not immediately of that which was laft drank; and this increafed difcharge, if the fupply is kept up, will continue : nor will this appear wonderful, if we confider the great capacity of the veffels that go to the kidneys; the conftant fupply of frefl blood that is effential to health; and the rapidity with which it is inceffantly circulated through the heart to all parts of the body.

Sect. XIII. Of Digeffion.

WE are now proceeding to fpeak of digeftion, which feems to be introduced in this place with propricty, after a defcription of the abdominal vifcera, the greatcr part of which contribute to this function. By digefien is to be underftood, the changes the aliment undergoes for the formation of chyle :-thefe changes are effected in the mouth, fomach, and fimall inteftines.

The mouth, of which every body has a general knowledge, is the cavity betwcen the two jaws, formed anteriorly and laterally by the lips, teeth, and cheeks, and terminating pofteriorly in the throat.

The lips and cheeks are made up of fat and mufcles, covered by the cuticle, which is continued over the whole inner furface of the mouth, like a fine and delicate membrane.-Befide this membrane, the infide of the mouth is furnified with a fpongy and very vafcular fubftance called the gums, by means of which the teeth are fecured in their fockets. A fimilar fubftance covers the roof of the mouth, and forms what is called the velum pendulum palati, which is fixed to the extremity of the arch formed by the offa maxillaria and offa palati, and terminates in a foft, fimall, and conical body, named uvula; which appears, as it wcre, fufpended from the middle of the arch over the bafis of the tongue.

The velum pendulum palati performs the office of a valve between the cavity of the mouth and the pharynx, being moved by feveral mufcles (F).

The tongue is compofed of feveral mufcies (G) which enable it to perform a variety of motions for the articulation of the voice; for the purpofes of maftication ; and for conveying the aliment into the pharynx. Its upper part is covered with papillæ, which conftitute the organ of tafte, and are eafily to be diftinguifted; it is covered by the fame membrane that lines the in-
fide of the mouth, and which makes at its inferior part towards its bafis a reduplication called fromum.

Pofteriorly, under the velum palati, and at the bafis of the tongue, is the pharynx: which is the beginning of the ofophagus, ftrctched out every way, fo as to refemble the top of a funnel, through which the aliment paffes into the fomach.

The mouth has a communication with the noftrils at its pofterior and upper part; with the ears, by the Euftachian tubes; with the lungs, by means of the larynx; and with the ftomach, by means of the œfophagus.

The pharynx is conftantly moiftened by a fluid, fecreted by two confiderable glands called the tonfils, one on each fide of the velum palati. Thefe glands, from their fuppofed refemllance to almonds, have likewife been called anzygdalus.

The mouth is moiftened by a confiderable quantity of faliva. This fluid is cierived from the parotid glands; a name which by its etymology points ont their fituation to be near the ears. They are two in number, one on each fide under the os malæ: and they arc of the conglomerate kind ; being formed of many fmaller glands, each of which fends out a very finall excretory duct, which unites with the reft, to form one common channel, that runs over the cheek, and piercing the buccinator mufcle, opens into the mouth on each fide, by an orifice into whiclı a briftle may be cafily introduced. -Befides thefe, the maxillary glands, which are placed near the inner furface of the angle of the lower jaw onk each fide ; the fublingual glands, which are fituated at the root of the tongue; the glands of the palate, which are feated in the velum palati; and thofe of the cheeks, lips, \&c. together with many other lefs confiderable ones, - pour the faliva into the mouth through their feveral excretory ducts.

The faliva, like all the other humours of the body, is found to be different in different people : but in general, it is a limpid and infipid fluid, withont finell in healtliy fubjects; and thefe properties would feem to prove that it contains very few faline or inflammable particles.

The ufes of the faliva feem to be to moiften and lubricate the mouth, and to affift in reducing the aliment into a foft pulp before it is conveyed into the ftomach.

The variety of functions which are conftantly per- of 103 formed by the living body, muft neceffarily occafion a of hunges continual wafte and diffipation of its feveral parts. A great quantity is every day thrown off by the infenfible perfpiration and other difcharges; and were not thefe loffes conftantly recruited by a frefh fupply of chyle, the body would foon effect its own diffolution. But nature has very wifely favoured us with organs fitted to produce fuch a fupply; and has at the fame time condued us witl the fenfations of hunger and thirft, that our attention may not be diverted from the neceffary bufinefs of nutrition. The fenfation of hunger is univerfally
(F) Thefe are the circumflexus palati, levator palati mollis, palato-pharyngreus conftrictor ifthmi faucium and azygos nvulæ. Sec page 708.
(c) Thefe arc, the genio-gloflis, hyo-gloffus, lingualis, and ftylo-gloffus. Sce parge 708.
of the verfally known ; but it would perlaps be difficilt to $\underbrace{\text { Abdomen, }}$ defcribe it perfectly in words. It may, however, be defined to be a certain uneafy fenfation in the ftomach, which induces us to wifh for folid food; and which likewifc ferves to point ont the proper quantity, and time for taking it. In defcribing the ftomach, mention was inade of the gaftric juice, as cvery where lubricating its inner coat. This humour mixes itfelf with the aliment in the fomach, and helps to prepare it for its paffage into the inteftines; but when the ftomach is perfectly empty, this fame fluid irrittes the coats of the flomach itfelf, and produces the fenfation of hunger:

A certain proportion of liquid aliment is required to affift in the procefs of digeftion, and to afford that moifture to the body, of which there is fuch a conftant diffipation.- Thirft induces us to take this neccflary fupply of drink; and the feat of this fenfation is in the tongue, fauces, and œefophagus, which from their grcat fenfibility are required to be kept moift : for though the fauces are naturally moiftened by the mucus and falival juices; yet the blood, when deprived of its watery part or rendered acrimonious by any natural caufes, never fails particularly to affect thefe parts, and the whole alimentary canal, and to occafion thirft. This is the common effect of fevers and of hard labour, by both which too mucli of the watery part of the blood is difilipated.
104 It has been obferved, that the aliment undergoes Of maftica- fome preparation in the mouth before it paffes into the tion and ftomach ; and this preparation is the effect of malticadeglutition. tion. In treating of the upper and lower jaws, mention was made of the number and arrangement of the teeth. The upper jaw was defrribed as being immoveable ; but the lower jaw was fpoken of as being capable of elevation and depreffion, and of a grinding motion. The aliment, when firft carried into the mouth, is preffed between the tecth of the two jaws by a very ftrong and frequent motion of the lower jaw; and the tongue and the cheeks affifting in this procefs, continue to replace the food between the teeth till it is perfectly divided, and reduced to the confiftence of palp. The incifores and canini divide it firft into fmaller pieces, but it is between the furfaces of the dentes inolares by the grinding motion of the jaw that the maftication is completed.

During this procefs, the falival glands being gently compreffed by the contraction of the mufcles that move the lower jaw, pour oat their faliva : this helps to divide and break down the food, which at length becomes a kind of pulp, and is then carried over the bafis of the tongue into the fauccs. But to effert this palfage into the oefophagus, it is neceffary that theother openings which were mentioned as having a communication with the mouth as well as the pharynx, fhould be clofed; that none of the aliment, whether folid or liquid, may pafs into thom, whilft the plarynx alone is dilated to receive it :-And fuch a difpolition actually takes place in a manner we will endeavour to defcribe.

The trachea artcria, or windpipe, throngh which the air is conveyed to the lungs, is placed before the refophagus - in the act of fwallowing; therefore, if the larynx (for fo the upper part of the trachea is callcd) is not clofed, the aliment will pafs into it in its way to the cefopingus. But this is prevented by a
finall and very elaftic cartilage, called epiglottis, which is attached only to the fore-part of the laryix; fo that $\underbrace{\text { Abdomen. }}$ the food in its paffage to the œefophagus preffes down this cartilage, which then covers the glotis or opening of the larynx; and at the fame time the veliun palati being capable of fome degree of motion, is drawn backwards by its mufcles, and clofes the openings into the nofe and the Euftachian tubes.-This, however, is not all. The larynx, which being compofed of cartilaginous rings, caunot fail in its ordinary fate to comprefs the membranous canal of the œefophagus, is in the aft of deglutition carried forwards and upwards by mufeles deftined for that purpofe ; and confequently drawing the fore-part of the pharynx with it, that opening is fully dilated. When the aliment has reached the pharynx, its defeent is promoted by its own proper weight, and by the mufcular fibres of the œfophagus, which continue to contract from above downwards, until the aliment has reached the fomach. That thefe fibres have no inconfidcrable fhare in deglutition, any perfon may experience, by fivallowing with his head downwards, when the defcent of the aliment cannot polfibly be effected by its weight.

It is necefifiry that the noftrils and the lungs fhonld communicate with the mouth, for the purpofes of feeech and refpiration : but if the moft minntc part of our food happens to be introduced into the trachea, it never fails to produce a violent cough, and fometimes the moft alarming fymptoms. This is liable to happen when we langh or fpeak in the ast of deglutition: the food is then faid to have paffed the wrong way. And indeed this is not improperly expreffed: for death would foon follow, if the quantity of aliment introduccd into the trachea fhould be fufficient to obftruet the refpiration only during a very fhort time; or if the irritating particles of food fhould not foon be thrown up again by means of the congh, which in thefe cafes very feafonably increafes in proportion to the degree of irritation.
If the velum palati did not clofe the paffage to the noftrils, deglutition would be performed with difficulty, and perhaps not at all ; for the aliment would return through the nofe, as is fometimes the cafc in drinking. Children, from a deficiency in this velum palati, have been feen to die a few hours after birth; and they who from difeafe or any other caufes have not this part perfect, fwallow with difficulty.
The aliment, after having been fufficiently divided by the action of the teeth, and attennated by the faliva, is received into the ftomach, where it is deftined to undergo a more confiderable change.
The properties of the aliment not being much. altered at its firft entrance into the fomach, and before it is thoroughly blended with the gaftric juice, is capable of irritating the inner coat of the fomach to a certain degrec, and occafions a contraction of its two orifices. -In this membranous bag, furrounded by the abdo. minal vifcera, and with a ccrtain degree of natural heat, the aliment undergoes a conftant agitation by means of the abdominal mufcles and of the diaphragm, and likewife by a certain contraction or expanfion of the mufcular fibres of the fomach itfelf. By this motion, evcry part of the food is expofed to the action of the gaftric juice, which gradually divides and attenuates it, and frepares it for its pafage into the intefines.

$\triangle \quad \mathrm{N} \quad \mathrm{A} \quad \mathrm{T} \quad \mathrm{O} \quad \mathrm{M} \quad \mathrm{Y}$.

Some゙ dufurations lutely pubiifled by Ner Funter in the Philofophical Tranfectons, tend to throw confulerable light on the principles of digeftion. There arc fev dead budies in which the ftomach, at its great end, is not found to be in fome degree digcted (it). Animals, or parts of animals, poffelfed of the living principle, when taken into the fomach, are net in the leaft affected by the action of that vifcus; but the mo. ment they lufe the living principle, they become fubject to it's digentive powers. This feems to be the cafe with the ftomach, which is enabled to refift the action of its juices in the living body: but when deprived of the living principle, it is then nolonger able to refift the powers of that nrenltruum, which it had itfelf formed for the digeftion of its contents; the procefs of digeftion appearing to be continued after death. This is confirmed by wliat happens in the fomachs of fifhes: They frequently fwallow, without maftication, fifh which are larger than the digefting parts of their ftomach can contain ; and in fuch cafes, that part which is taken into the fomach is more or lefs diffolved, while that part which remains in the oefophagus is perfectly found; and here, as well as in the human body, the digefting part of the fomach is often reduced to the fame ftate as the digefted part of the food. There appearances tend to prove, that digeftion is not effected by a mechanical power, by contractions of the ftomach, or by heat; but by a fluid fecreted in the coats of the ftomach, which is pourcd into its cavity, and there animalizes the food, or affimilates it to the narure of blood.

* Hift. de Academie yale des iences, $\xi_{\text {c. }}$ ur 1784 . em. 15 . peam fome late experiments by M. Sage,* it appears, that inflammable air has the property of deftroying and difolving the animal texture : And as we fwallow with the fubftances which ferve us for food a great quantity of atmofpherical air, M. Sage thinks it pof- fible, that dephlogifticated, which is its principle, nay be converted in the fomach into inflammable air, or may modify into inflammable air a portion of the oily fubftance which is the principle of aliments. In this cafe, would not the inflammable air (he afks), by diffolving our food, facilitate its converfion into chyle?

Bethis as it may, the food, after having remained one, two, or three hours in the fomach, is converted into a grcyifh pulp, which is ufually called chymus, a word of Greek etymology, fignifying juice, and fome few milky or chylous particles begin to appear.-But the term of its refidence in this bag is proportioned to the nature of the aliment, and to the ftate of the fomach and its juices. The thinner and more perfeetly digefted parts of the food pafs by a little at a time into the duodenum, through the pylorus, the fibres of which relax to afford it a paffage ; and the groffer and lefs digefted par-
ticles remain in the fomach, till they acquire a fuffi. of the cicat fluidity to pass into the inteftines, where the na- Ahdomen. ture of the chymieus is perfectly changed. The bile and pancreatic juice which flow into the duodenum, and the mucus, which is every where diltilled from the furface of the intentines, mix themfelves with the alimenttary pulp, which they ftill farther attenuate and difolve, and into which they fcom to infufe new properties.

Iwo matters very different from each other in their nature and deftination, are the refult of this combina-tion.-One of thefe, which is compofed of the liquid parts of the aliment, and of fome of its more folid particles, extremely divided and mixed with the juices we have defcribed, conftitutes a very mild, fweet, and whitifh fluid, refcmbling milk, and diftinguifted by the' name of chigle. This inid is abforbed by the lacteal veins, which convey it into the circnlation, where, by being affimilated into the nature of blood, it affords that fupply of nutrition, which the continual wafte of the body is found to require. - The other, is the remains of the alimentary mafs deprived of all its nutritious particles, and containing only fuch parts as were rejected by the abforbing mouths of the lacteals. This grofer part, called the fieces, paffes on through the courfe of the inteftines, to be voided at the anus, as will be explained hereafter; for this procefs in the ceconomy cannot be well underftood till the motion of refpiration has been explained. But the firueture of the inteftines is a fubjeit whicli may be properly defcribed in this place, and deferves to be attended to.

It has bcen already obferved, that the intentinal canal is five or fix times as long as the body, and that it forms many circumvolutions in the cavity of the abdomen, which it traverfes from the right to the left, and again from the left to the right ; in one place defcend'ing, and in another extending itfelf upvards. It was noticed likervife, that the inner coat of the inteftines, by being more capacious than their exterior tunics, formed a multitude of plaits placed at a certain diftance from cach other, and called valvala comiventes. Now this difpofition will be found to afford a farther proof of that divine wifdor, which the amatomift and phyfiologift cannot fail to difcover in all their purfuits. -For if the inteftinal canal was much fhorter than it naturally is ; if inftead of the prefent circumvolations it paffed in a direct conrfe from the ftomach; and if its inner furface was fmooth and deftitute of valves; the aliment would confequently pals with great rapidity to the anus, and fufficient time would be wanting to affimilate the chyle, and for the neceffary abforption of it into the lacteals: fo that the body would be deprived of the fupply of nutrition, which is fo effential to life and health; but the length and circumvolutions of the inteftines, the inequality of their internal fur-
face,
(н) The Abbé Spallanzani, who has lately written upon digeftion, finds, from a variety of experiments, made upon quadrupeds, birds, and fifhes, that digeftion goes on for fome time after death, though far lcfs confiderable than in living animals; but heat is neceffary in many animals, or at leaft promotes it in a mach greater degree. He found alfo, that when the fomach was cut out of the body, it had fomcwhat of the power of digeftion, though this was trifing when compared with that which took place when the fomach was left in the body. In not one of the animals was the great curvature of the flomach diffolved, or much eloded after death. There was often a little erolion, cfpecially in different fifles; in which, when he had cleared the fomach of its contents, the internal coat was wanting. In other animals there was only a fight excoriation; and the in-

Of the face; and the courfe of the aliment through them, all $\underbrace{\text { Abdonen. }}$ concur to perfect the feparation of the chyle from the frees, and to afford the necelfary nourifhent to the body.

Sect. XIV. Of the Courfe of the Chyle, and of the Lymphatic Syftem.
ro5. AN infinite number of very minute veffels, called the lacteal veins, arife like net-work from the inner furface of the inteftines, (bitt principally from the jejunum and ilimn), which are diftended to imbibe the nutritious thluid or chyle. Thefe vefficls, which were difcovered by Afellinis in 1622 (I), pafs obliquely through the coats of the inteftine, and running along the mefentery, unite as they advance, and form larger branches, ail of which pafs through the mefenteric or conglobate glands, which are very numerous in the human fulject. As they run between the intenines and thefe glands, they are fiyled vence lactiece primis groneris: but afier leaving the fe glands, they are found to be lefs numerous, and teing increafed in fize, are then called verze lactice Sesurndi generis, which go to depofite their contents in the thorasic duct, through which the chyle is convcyed into the blood.

This thoracic duct begins about the lower part of the firf vertebra lumborum, from whence it palfes up by the lide of the aorta, between that and the vena azysyos, clofe to the vertebra, being covcred hy the plenra. Sanetimes it is found divided into two branches; but they ufually unite again into one canal, which opens into the left fubclavian vein, after having run a little way in an oblique courfe between irs coats. The fubclavian vein communicates with the vena cava, which paffes to the right auricle of the heart.

The lower part of this duct being ufnally larger than any other part of it, has been named receptacuunz chy* Herufon's li, or Pecquet's's receptacle, in honour of the anatomift Exp. Inq. who firft difcovered it in 165 r . In fome quadrupeds, Part In. in turtle and in fifh, this enlargement * is more confiderable in proportion to the fize of the duct, than it u-
fually is in the human fubject, where it is not commonly foind large enough to merit the name of receptacultho.

Opportunities of obferving the lacteals in the human fubjeit do not often occur ; but they may be eafily demonftrated in a dog or any other quadruped that is killed two or three hours after feeding upon milk, for then they appear filied with white chyle.

But thefe latteals which we have defcribed, as parfing from the inteitines through the mefentery to the thoracic dutt, compofe only a part of a fyftem of reffels which perform the office of abjorpticin, and which conftitute, with their common trunk the thoracic dua, and the conglobate glands that are difperfed through the body, what may be fyled the lymphatic fijfem. So that what is faid of the flucture of one of thefe feries of veffels may very properly be applied to that of the other.

The lymphatic veins (K) are minute pellucid tubes, which, like the lacteals, direet their courfe towards the centre of the body, where they poir a colourlefs fluid into the thoracic duct. The lymphatics from all the lower parts of the body gradually unite as they approach this duit, into which they enter by three ar fout very large trunks, that feem to form the lower extremity of this canal, or receeptaculumiz chyli, wlicha may be confidered as the great trunk of the lyınphatic fyftem. The lacteals open into it near the fame place; and the lymplatics, from a large fare of the upper parts of the body, pour their lymph into different parts of this duct as it runs upwards, to terminate in the left fubclavian vein. The lymphatics from the right fide of the neck, thorax, and right arm, \&c. terminate in the right fubclavian vein.

As the lymphatics commonly lie clofe to the large blood-velfels, a ligature paficd round the crural artery in a living animal, by including the lymphatics, will occation a diftenfion of thefe vefiels below the ligature, fo as to demonftrate then with eafe; and a ligature pafied round the thoracic duct, inftantly after killing an animal, will, by fopping the courfe of its contents
jury in all of them was at the infcrior part, or great curvature. The coats of the ftomach fuffer lefs after death than fiefl, or part of the fomach of fimilir aninals put into it: The author affigns as a reafon for this, that thefe bodies are invefted on all fides by the galtric fluid, whereas it only acts on the internal furface of the fomach.
(x) We are informed by Galen, that the laiteals had been feen in kids by Erafiftratus, who contidered them as arteries carrying a milky fluid : but from the remote time in which he lived, they do not feem to have been -noticed till they were difcovered in a living dog by Afcllius, who denominated them laftcals, and confidered them as ferving to convey the chyle from the inteftines to the liver; for before the difcovery of the thoracic duet, the ufe of the liver was univerfally fuppofed to be that of converting the chyle into blood. But the difcovery of the thoracic duct hy Pecquet, not long after, corrected this error. Pecquet very candidly confeffes, that this difcovery accidentally arofe from his observing a white fluid, mixed with the blood, flowing out of the vena cava, after he had cut off the heart of a living dor; which he fufpected to be chyle, and afterwards traced to its fource from the thoracic duct: This duet had been feen near an hundred years before in a horfe by Eutachins, who fpcaks of it as a vein of a particular frnctare, but without knowing any thing of its termination or ufe.
(k) The arteries in their courfe througla the body becoming gradually too minute to admit the red globules of the blood, have then been flyled capilary or lymphatic arteries. The veffels which are here defcribed as confluting the iy nplatice lyfein, were at firfe fuppofed to be continued from thofe arteries, and to convey back the lymph, either into the red veins or the thoracic duct; the office of abforption having been attribited to the rel veias. But we know that the lymphatic seins are not contintiations of the lymphatic arteries, but that they conftute the abjorbent fifleng. There are fill, however, fome very refpectable names amons, the anatomifs of the prefent aqe, who coniend, that the red reins act ikevife as abfonthents:-bur it feems to have becia clearly proved, that the red veins do abforb nowhere bat in the cavernons cells of the penis, the erection of which is occafioned by a ditention of thofe cells with arterial blood.
into the fubclavian vein, diftend not only the lasteals, but alfo the lymphatics in the abdomen and lower extremities, with their natural fluids (L).

The coats of thefe veffels are too thin to be feparated from each other; but the mercury they are capable of fultaining, proves them to be very ftrong; and their great power of contraction, after undergoing confiderable diftenfion, together with the irritability with which Baron Haller found them to be endued , feems to render it probable, that, like the blood-veffels, they have a mufcular coat.

The lymphatics are nourifhed after the fame manner as all the other parts of the body. For even the moft minute of thefe veffcls are probably fupplied with ftill more minute arteries and veins. This feems to be proved by the inflammation of which they are fufceptible; and the painful fwellings which fometimes take place in lymphatic veffels, prove that they have nerves as well as blood-veffels.

Both the lacteals, lymphatics, and thoracic duct, are furnimed with valves, which are much more common in thefe veffels than in the red veins. Thefe valves are ufually in pairs, and ferve to promote the courfe of the chyle and lymph towards the thoracic duet, and to prevent its return. Mention has been made of the glands, through which the lacteals pafs in their courfe through the mefentery; and it is to be obferved, that the lymphatics pafs through fimilar glands in their way to the thoracic duct. Thefe glands are all of a conglobate kind, but the changes which the chyle and lymph undergo in their paflage through them, have not yet been afcertained.
The lymphatic vefels begin from firfaces and cavities in all parts of the bodics as abforbents. This is a fact now univerfally allowed; but how the fluids they abforb are poured into thofe cavities, is a fubject of controverfy. The contents of the abdomen, for inflance, were defcribed as being conftantly moiftened by a very thin watery fluid. The fame thing takes place in the pericardium, pleura, and all the other cavities of the body, and this watery fluid is the lymph. But whcther it is exhaled into thofe cavities through the minute ends of arteries, or tranfuded through their coats, are the points in difpute. We cannot here be permited to rclate the many ingenious arguments that have been advanced in favour of each of thefe opinions; nor is it perhaps of confequence to our prefent purpofe to enter into the difpute. It will be fufficient if the reader can form an idea of what the lympli is, and of the manner in which it is abrorbed.

The lymph, from its tranfparency and want of co lour, would feem to be nothing but water ; and lience
the firft difcoverers of thefe veffels atiled them ductus aguofi: but experiments prove, that the lympli of an
of the hcalthy animal coagulates by being expofed to the air, or a certain degree of heat, and likewife by being fuffered to reft; feeming to agree in this property with that part of the blood called the coagulable lymph.This property of the lymph lads to determine its ufe, in moiftening and lubricating the feveral cavities of the body in which it is found; and for which, by its gelatinous principle, it feems to be much better calculated than a pure and watery fluid would be, for fuch it has been fuppofed to be by fome anatomifts.

The mouths of the lymphatics an. 1 lacteals, by acting as capillary tubes, feem to abforb the lymph and chyle fomevliat in the fame manner as a capillary tube of glafs, when put into a bafon of water, is enabled to attract the water into it to a certain height; but it is probable that they like wife poffefs a living power, which affifts in performing this office. In the human body the lymph, or the chyle, is probably conveyed upon this principle as far as the firf pair of valves, which feem to be placed not far from the orifice of the abforbing veffel, whether lymphatic or lacteal; and the fluid will then be propelled forwards, by a continuation of the abforption at the orifice. But this does not feem to be the only inducement to its progrefs towards the thoracic duet ; thefe veffels have probably a mufcular coat, which may ferve to prefs the fluid forwards from one pair of valves to another; and as the large lymphatic veffels and the thoracic duct are placed clofe to the large arteries, which have a confiderable pulfation, it is realonable to fuppofe, that they derive fome advantages from this fituation.

> Sect. XV. Of the Generative Organs; of Conception, \&c.

§1. The Male Organs.

The male organs of generation have been ufually divided into the parts which ferve to prepare the femen from the blood, and thofe which are diflended to convey it into the womb. But it feems to be more proper to diftinguifh them into the preparing, the containing, and the expelling parts, which are the different offices of the tefles, the veficulce feminales, and the pemes; and this is the order in which we propofe to defcribe them.

Thic teftes art two glandular bodies, ferving to fecrete the femen from the blood. They are originally formed and lodged within the cavity of the abdomen ; and it is not till after the child is born, or very near that time, that they begin to pafs into the groin, and from thence into the fromm (M). By this difpofition
(x) In the dead body they may be eafily domonftrated by opening the artery ranifying through any vifcus, as in the fpleen, for inftance, and then throwing in air; by which the lymphatics will be diftended. One of them may then be punctured, and mercury introduced into it through a blow-pipe.
(a) It fometimes happens in diffecting ruptures, that the inteftine is found in the fame fac, and in contact with the teftis. This appearance was at firft attributed to a fuppofed laceration of the peritonaxum ; but later obfervations, by pointing out the fituation of the tefticles in the foetus, have led to prove, that the teffis, as it defcends into the fcrotum, carries with it a portion or elongation of the peritonxum, which hecomes itstunica vaginalis, or a kind of fac, in which the tefticle is lodged, as will be explained in the courfe of this fection. The communication between this fac and the cavity of the abdomen, is ufially foon cut off; but in fome ful-

Of the they are very wifely protecied from the injuries to $\underbrace{\text { Abdomen. }}$ which they would be liable to be expofed, from the different pofitions of the child at the time of parturition.

The tefticles in this fate are loofely attached to the prox mufcles, by means of the peritonxum by which they are covered; and they are at this time of life connected in a very particular manner to the parietes of the abdomen, and likewife to the fcrotum, by means of a fubftance which Mr Hunter calls the ligament or gubernaculum teflis, becaufe it connects the teftis with the fcrotum, and directs its courfe in its defcent. This gubernaculum is of a pyramidal form, with its bulbous head fixed to the lower end of the teftis and cpididymis, and lofes its lower and fender extremity in the cellular membrane of the fcrotum. It is difficult to afcertain what the flucture and compofition of this gubernaculum is, but it is certainly vafcular and fibrous; and, from certain circumftances, it would feem to be in part compofed of the cremafter mufcle, running upwards to join the lower end of the teftis.

We are not to fuppofe that the tefticle, when defcended into the fcrotum, is to be feen loofe as a piece of gut or omentum would be in a common hernial fac. We have already obferved, that during its refidence in the cavity of the abdomen it is attached to the peritoneum, which defcends with it; fo that when the fac is completed in the fcrotum, the tefticle is at firft attached only to the pofterior part of it, while the fore part of it lies loofe, and for fome time affurds a communication with the abdomen. The fpermatic chord, which is made up of the fermatic artery and vein, and of the vas deferens or excretory duct of the teftis, is clofely attached behind to the pofterior part of this elongation of the peritonæum. But the fore part of the peritoneal fac, which is at firf loofe and not attached to the tefticle, clofes after a certain time, and becomes united to the pofterior part, and thus perfectly furrounds the tefticle as it were in a purfe.

The telticles of the foetus differ only in their fize and fituation from thofe of the adult. In their paffage from the abdomen they defcend through the abdominal rings into the fcrotum, where they are fupported and defended by various integuments.

What the immediate caufe of this defcent is, has not yet been fatisfactorily determined. It has been afcribed to the effects of refpiration, but the tefticles have fometimes been found in the fcrotum before the child has breathed; and it does not feem to be occafioned by the action of the cremafter mufcle, becaule the fame effect would be liable to happen to the hedgehog, and fome other quadrupeds, whofe tefticles remain in the abdomen during life.

The fcrotum, which is the external or common covcring of both tefticles, is a kind of fac formod by the common integuments, and externally divided iuto two equal parts by a prominent line called raphe.

In the inner part of the fcrotum we meet with a cellular coat called dartos (N), which by its duplicature divides the frotum into two equal parts, and forms what is called feptum fcroti, which correfponds with the raphe. The collapfion which is fo often obferved to take place in the fcrotum of the healthy fubject, when excited by cold or by the fimulus of venery, feems to be very properly attributed to the contractile motion of the fkin, and not to any mulcular fibres, as is the cafe in dogs and fome other quadrupeds.

The fcrotum, then, by means of its feptum, is found to make two diftinet bags, in which the tefticles, invefted by their proper tunics, are fccurely lodged and feparated froin eacli other. Thefe coats are the cremafter, the tunica vaginalis, and the tunica albuginea. The firft of thcfe is compofed of mufcular fibres, and is to be confidered only as a partial covering of the teftis; for it furrounds only the feermatic chord, and terminates upon the upper and external parts of the tunica vaginalis teftis, ferving to draw up and fufpend the tefticle (0). The tunica vaginalis teftis has already been defrribed as being a thin production of the peritonæum, loofely adhering every where to the tefticle, which it includes as it werc in a bag. The tunica albuginea is a firm, white, and very compact membrane of a gliftening appearance, which immediately invefts the body of the teftis and the epididymus; ferving in fome meafure to connect them to cach other, but without extending itfelf at all to the fpermatic chord. This iunica albuginea ferves to confine the growth of the teftis and epididymus within certain limits, and by giving them a due degree of firmuefs, enables them to perform their proper functions.

Having removed this laft tunic, we difcover the fubflance of the tefticle itfelf, which appears to be made up of an infinite number of very elaftic filaments, which may be beft diftinguifhed after macerating the tefticle in water. Each tefticle is made up of the fipermatic artery and vein, and the excretory veffels or tubuli feminiferi. There are likewife a great number of abforbent veffels, and fome branches of nerves to be met with in the tefticles.

The fpermatic arteries arife one on each fide from the aorta, generally about an inch below the emulgents. The right fpermatic vein commonly paffes into the vena cava; but the left fermatic vein ufually empties itfelf into the emnulgent on that fide; and it is fup-
jects it continues open during life; and when an hernia or defcent of the inteftine takes place in fuch a fubject, it does not pufh down a portion of the peritonzum before it, as it mult otherwife neceffarily do, but paffes at once through this opening, and comes in contact with the naked tefticle, conftituting that particular fpecies of rupture callcd bernia congenita.
(v) The dartos has ufiually becn confidered as a inufele, and is defcribed as fuch both by Douglas and Winflow. But there being no part of the fcrotum of the human fubject which can be faid to confift of mufcular fibres, Albinus and Haller have very properly omitted to defcribe the dartos as a mufcle, and confider it merely as a cellular coat.
(o) The cremafter mufcle is compofed of a few fibres from the obliquus internus abdominis, which uniting with a few from the tranfverfalis, defcend upon the fpermatic chord, and are infenfibly loft upon thi" tunica vaginalis of the tefticlc. It ferves to fufpend and draw np the tefticle.
pofed to take this courfe into the emulgent, that it may avoid paffing over the aorta, which it would be obliged to do in its way to the vena cava.

The blood is circulated very flowly through the fpermatic artery, which makes an infinite number of circumvolutions in the fubftance of the tefticle, where it depofites the femen, which paffes through the tubuli feminiferi. Thefe tubuli feminiferi are feen running in fhort waves from the tunica albuginea to the ax is of the tefticle; and are divided into diftinet portions by certain thin membranous productions, which originate from the tunica albuginea. They at length unite, and by an infinite number of convolutions form a fort of appendix to the teftis called epididymis (p), which is a vafcular body of an oblong fhape, fituate upon the fuperior part of each tefticle. Thefe tubuli of the epididymis at length form an excretory duct called vas deferens, which afcends towards the abdominal rings, with the other parts that make up the fpermatic chord, and then a feparation takes place; the nerves and blood-veffels paffing on to their feveral terminations, and the vas deferens going to depofit its femen in the veliculæ feminales, which are two foft bodies of a white and convoluted appearance externally, fituated obliquely between the rectum and the lower part of the bladder, and nniting together at the lower extremity. From thefe refervoirs (e), which are plentifully fupplied with blood-veffcls and nerves, the femen is occafionally difcharged through two fhort paffages, which open into the urethra clofe to a little eminence called verumontaniem.

Near this eminence we meet with the proftate,
which is fituated at the neck of the bladder, and is defcribed as being of a glandular ftructure. It is flaped fomewhat like a heart with its fnall end foremoft, and invents the origin of the urethra. Internally it appears to be of a firm fubtance, and compoled of feveral follicles, fecreting a whitifh vifcid fluid, that is difcharged by ten or twelve excretory dusts into the urethra, on each fide of the openings of the veficula feminales at the fame time, and from the fame caufes that the femen is expelled. As this latter fllid is found to be exceedingly limpid in the veficula feminalcs of the dead fubject, it probably owes its whitenefs and vifcidity to this liquor of the proftate.

The penis, which is to be confidered as the vehicle on active organ of procreation, is compoferl of two columns, the corpora cavernofa, and corpus fpongiofim. The corpora cavernofa, which conftitute the greateft part of the penis, may be defcribed as two cylindrical ligamentous tubes, each of which is compofed of an infinite number of minute cells of a fpongy texture, which communicate with each other. Thefe two bodies are of a very pliant texture, and capable of confiderable diftenfion; and being united laterally to each other, occafion by this union a fpace above and another below. The uppermof of thefe fpaces is filled by the blood veffels, and the lower one, which is larger than the other, by the urethra and its corpus fpongiofum. Thefe two cavernons bodies are at firft only feparated by a partition of tendinous fibres, which allow them to communicate with each other; but they afterwards devaricate from each otler like the branches of the letter Y, and diminifhing gradually in fize, are attached,
(r) The tefticles were named didymi by the ancients, and the name of this part was given to it on account of its fituation upon the tefticle.
(e) That the bags called veficule feminales are refervoirs of femen, is a circumftance which has been by anatomifts univerfally believed. Mr J. Hunter, however, from feveral circumftances, has been induced to think this opinion erroneous.

He has examined thefe veficulx in people who have died fuddenly, and he found their contents to be different in their properties from the femen. In thofe who had loft one of the tefticles, or the ufe of one of them, by difeafe, both the veficula were full, and their contents fimilar. And in a lufus natura, where there was no communication between the vafa deferentia and veficulæ, nor between the veficulæ and penis, the fame thing took place.

From thefe obfervations, he thinks we have a prefumptive proof, That the femen can be abforbed in the body of the tefticle and in the epididymis, and that the veficulre fecrete a mucus which they are capable of abforbing when it cannot be made ufe of: That the femen is not retained in refervoirs after it is fecreted, and kept there till it is ufed; but that it is fecreted at the time, in confequence of certain affections of the mind ftimulating the tefticles to this action.

He corroborates his obfervations by the appcarance on diffection in other animals; and here he finds, That the fhape and contents of the veficulæ vary much in different animals, while the femen in moft of them he has examined is nearly the fame: That the vafa deferentia in many animals do not communicate with the veficulæ: That the contents of the veficulx of caftrated and perfect animals are fimilar, and ncarly equal in quantity, in no way refembling the femen as emitted from the animal in coitu, or what is found in the vas deferens after. death. He obferves likewife, that the bulb of the urethra of perfect males is confiderably larger than in caftrated animals.

From the whole, he thinks the following inferences may be fairly drawn: That the bags called veficulce feminales are not feminal refervoirs, but glands fecreting a peculiar mucus; and that the bulb of the wrethra is properly fpeaking the receptacle of the femen, in which it is accumulated previous to ejection.

But altho wh he has endeavoured to prove that the vefienle do not contain the femen, he has not been able to afcertain their particular ufe. He thinks, howcver, we may be allowed upon the whole to conclude, that they are, torecher with other parts, fubfervient to the purpofes of generation.

Although the author has treated this fubject very ably, and made miny ingenions obiervations, fome things may be objected to what he has advanced; of which the following are a few: That thofe animals who tave

Of the tached, one on each fide, by means of the ligamentum Abdomen. fufpenforium penis to the ramus ifclii, and to the inferior portion of the os pubis.

The corpus fpongiofum penis, or corpns fpongiofum urethre, as it is fyled by fome autiors, begins as foon as the urethra has paffed the proftate, with a thic:s origin almoft like a heart, firft under the urechra, and afterwards above it, becoming gradually thinncr, and furrounding the whole canal of the urethra, till it terminates in a confiderable expantion, and conftutes what is called the glans penis, which is exceedingly vafcular, and covered with papillæ like the tongue. The cuticle which lines the inner furface of the urethra, is continued over the glans in the fame manner as it is fpread over the lips.

The penis is invefted by the common integuments, but the cutis is reflected back every where from the glans as it is in the eye-lids; fo that it covers this part, when the penis is in a relaxed ftate, as it were with a hood, and from this ufe is called prepuce.

The prepuce is tied down to the under part of the glans by a fmall ligament called fromum, which is it fat only a continuation of the cuticle and catis. There are many fimple febaceous follicles called gtandula odorifera, placed round the bafis of the glans; and the fluid they fecrete ferves to preferve the exquifite fenfibility of this part of the penis, and to prevent the ill effects of attrition from the prepuce.

The urethra may be defined to bc a membranous canal, pafling from the bladder through the whole extent of the penis. Several very fiall openings, called lacuna, communicate with this canal, throngh which a mucus is difcharged intoit; and befides thefe, there are two glands, firtt deferibed by Cowper, as fecreting a fluid for lubricating the urethra, and called Cowper's * Memoires glands (R); and Littre* fpeaks of a gland fituated de l^{\prime} Acoad. near the proftate, as heing deftincd for the fame ufe.
ifchium, and terminate in the corpora cavernofa. The acceleratores arife from the fphincter, and hy their infertion ferve to comprefs the bulbous part of the urethra; and the tranfverfales are deflined to atford a paffage to the femen, by dilating the canal of the urethra.

The arterics of the penis are chiefly derived from the internal iliacs. Some of them are fuppofed to terminate by pabulous orifices within the coryora cavernofa and corpus fpongiofum; and others terminate in veins, which at lafthake up the vena magna dorfi penis, and other fmaller veins, which are in general diftributed in like order with the arteries.

Its nerves are large and numercus. They arife from the great feiatic nerve, and accompany the arteries in their courfe through the penis.

We have now defribed the anatomy of this organ; and there only remains to be explaineci, how it is enabled to attain that degree of firmnefs and difention which is efiential to the great work of gencration.

The greateft part of the penis has been fycken of as being of a foorigy and cellular texture, plentifully fupplied with blood-veflels and nerves, and as liaving muicles to move it in difficent directions. Now, the blood is confantly pafing into its cells through the fimall branches of the arteries which opell into them, and is from thence as conftantly returned by the veins, fo long as the corpora cavernofa and corpus fpongiofum continue to be in a relaxed and pliant flate. But when, from any nervous influence, or other means, which it is not neceffary here to define or explain, the erectores penis, cjaculatores feminis, levatores ani, \&c. are induced to contract, the veins undergo a certain degree of compreffion, and the paffage of the blood through them is fo mich impeded, that it collects in them in a greater proportion than they are enabled to carry off, to that the penis gradually enlarges; and being more and more forcibly drawn up againt the as pubis, the vena magna itfelf is at length comprelled. a.1d the penis becomes fully diftended. But as the caufes which firft occalioned this diftention fubfide, the penis gradually returns to its flate of relaxation.

> § 2. Female Organs of Gencration.

Anatomical writers ufually divide the female organs of generation into exterual and interial. In the firft divilion they iaclude the mons veneris, labia pudendi, perinaum, chitoris, nymplia, and caruncella myrififormes; and in the latter, the vagina, with the aterus and its appendages.

5 A. 2
The

The urethra being continued from the nock of the bladder, is to be conlidered as making part of the urinary paflage; and it likewife affords a conveyance to the femen, wlich we have obferved is occafionally difcharged into it from the veficulæ feminales. The direction of this canal being firlt under and then bcfore the pubis, occafions a winding in its courfe from the bladder to the penis not unlike the turns of the letter S.

The penis has three pair of mufcles, the erectores, acceleratores, and tranfverfales. They pufli the blood from the crura to the fore part of the corpora cavernofa. The firft originate from the tuberofity of the
bags called weficula feminales perform copulation quickly; whereas others that want them, as in the dog hind, are tedious in copulation: That in the human body, at leaft, there is a free commurication betwcen the vafa deferentia and veficulz ; and in animals where the author has olferved no communication between the vafa defercutia and veficulx, there may be a communication by verifels not yet difoovered, and which may be compared to the hepato-cyftic duets in forwls and finhes: That the fluid ir the end of the vafa deferentia and the veficulæ feminales are fimilar, according to the author's own obfervation: That the veficula in fome arimals incrcafe and decreafe with the tefticle at particular feafons: That in birds and certain fifles, there is a dilatation of the ends of the vafa deferentia, which the author himfelf allows to be a refervoir for the femen.

With refpect to the circumftance of the bulb of the arethra anfwering the purpofe of a refervoir, the author has mentioned no facts which tend to cfablifh this opinion. See Obfervations on certain Ialts of the Animal Oecontomy.
(R) Eoth Heifer and Morgagni obferve, that they have fometimes not been able to find thefe glanas; fo that they do not feem to exift in all fubjects.

The mons veneris, which is placed on the upper part of the fymplyyis pubis, is internally compofed of adipofe menbranes, which makes it foft and prominent : it divides into two parts called labia pudeade, which defcending towards the rectum, from which they are divided by the perinæum, form what is called the fourchitle. The perinxum is that Helhy fpace which extends about an inch and an half from the fourchette to the anus, and from thence about two inches to the coccyx.

The labia pudendi being feparated, we obferve a fulcns called folfo magna; in the upper part of which is placed the clitoris, a fmall round fpongy body, in fome meafure refembling the male penis, but impervious, compofed of two corpora cavernofa, arifing from the tuberofities of the ofla ifchii; furnifhed with two pair of mufcles, the erectores clitoridis, and the fphincter or confrictor oftii vaginæ; and terminating in a glans, which is covered with its prepuce. From the lower part, on each fide of the folfa, pafs the nymphr, two membranous and fpongy folds which feem deftined for mfeful purpofes in parturition, by tending to enlarge the volume of the vagina as the child's head patles through it. Between thefe, about the middle of the foff magna, we perceive the orifice of the vagina or os externum, clofed by folds and wrinkles; and about balf an inch above this, and about an inch below the clitoris, appears the meatus urinarius or orifice of the urethra, much fhorter, though fomewhat larger, than in men, with a little prominence at its lower edge, which facilitates the introduction of the catheter.

The os externum is furrounded internally by feveral meinbranous folds callcd caruncula myrtiformes, which are partly the remains of a thin membrane called hymen, that covers the vagina in children. In general the hymen is fufficiently open to admit the paffage of the menfes, if it exilts at the time of their appearance; fometimes, however, it has been found perfectly clofed.

The vagina, fituated between the urethra and the rectum, is a membranous cavity, furrounded efpecially at its external extremity with a fpongy and vafcular fubftance, which is covered by the fphincter oftii vaginæ. It terminates in the uterus, about half an inch above the os tincæ, and is wider and fhorter in wonen who have had children than in virgins.

All thefe parts are plentifully fapplied with bloodveffels and nerves. Around the nymphæ there are febaceous follicles, which pour out a fluid to lubricate the inner furface of the vagina; and the meatus urinarius, like the urethra in the nale fubject, is conftantly moiftened by a mucus, which defends it againft the acrimony of the urine.

The uterus is a hollow vifcus, fituated in the hypogaftric region, between the rectum and bladder. It is deftined to receive the firft rudiments of the foetus, and to affift in the developement of all its parts, till it arrives at a ftate of perfection, and is fitted to enter into the world, at the time appointed by the wife Author of nature.

The uterus, iu its nimpregnated fate, refembles a pear in thape, fomewhat Hattencd, with its fundus or . bottom part turned towards the abdomen, and its cervix or neck furrounded by the vagina. The entrance into its cavity forms a little protuberance, which has
been compared to the mouth of a tench, and is therefore called os tincre.

The fubitance of the uterus, which is of a confiderable thicknels, appears to be compofed of mufcular and fmall liganentous trbres, fmall branches of nerves, fome lymphatics, and with arteries and veins innumerable. Its nerves are chiefly derived from the intercoftal, and its arteries and veins froin the hypogaftric and fpermatic. The membrane which lines its cervix, is a continuation of the inner inembiane of the vagina; but the outer furface of the body of the nterus is covered with the peritonæum, which is reflected over it, and defcends from thence to the inteftinum rectum. 'This duplicature of the peritonæum, by paffing off from the fides of the uterus to the fides of the pelvis, is there firmly connected, and forms what are called ligamenta uteri lata; which not only ferve to fupport the uterus, but to convey ncrves and blood-veffels to it.

The liganeenta uteri rounda arife from the fides of the fundus uteri, and paffing along within the fore-part of the ligamenta lata, defcend through the abdominal rings, and terminate in the fubftance of the mons veneris. The fubltance of thefe ligaments is vafcular, and although both they and the ligamenta lata admit the uterus in the virgin fate, to move only about an inch up and down, yct in the courfe of pregnancy they admit of conliderable diftenfion, and after parturition return nearly to their original ftate with furprifing quicknefs.

On each fide of the inner furface of the uterus, in the angle near the fundus, a fimall orifice is to be difcovered, which is the beginning of one of the tubæ fallopianæ. Each of thefe tubes, which are two in number, paffing through the fubftance of the uterus, is extended along the broad ligaments, till it reaches the edge of the pelvis, from whence it reflects back; and turning over behind be ligaments, about an inch of its extremity is feen lhanging loofe in the pelvis, near the ovarium. Thefe extremities, having a jagged appearance, are called fimbrice, or mor fus diaboli. Each tuba Fallopiana is ufually about three or four inches long. Their cavities are at firft very fmall, but become gradually larger, like a trumpet, as they approach the fimbriæ.

Near the finbriæ of each tuba Fallopiana, abont an inch from the utcrus, is fituated an oval body called ovariam, of about half the lize of the male tefticle. Each of thefe ovaria is covered by a production of the peritonæum, and hangs looie in the pelvis. They are of a flat and angular form, and appear to be compofed of a white and collular fubflance, in which we are able to difcover feveral ininute veficles filled with a coagulable lymph, of an uncertain number, commonly exceeding 12 in each ovary. In the female of riper years, thefe veficles become exceedingly turgid, and a kind of yellow coagulun is gradually formed within one of them, which increafes for a certain time. In conception, one of thefe mature ova is fuppofed to be impregnated with the male femen, and to be fqueezed out of its nidus into the Fallopian til e; after which the ruptured part forms a fubfance which in fome avimals is of a yellow colonr, and is therefore called corpus lutcums; and it is obfervable, that the number of thefe fears or fiffures in the ovariuin, conftantly correfponds with the number of feetilfes excluded by the mother.

Part III.

O? the
Abdomen.

Man, being ever curious and inquifitive, has naturally been led to enquire after the origin of his exiftence; and the fubject of generation has employed the philofophical world in all ages: but in following nature np to her minute recelles, the philofopher foon finds himfelf bewildered, and his imagination often fupplies that which lie fo eagerly wifhes to difcover, but which is deftined perhaps never to be revealed to him. Of the many theories which have been formed on this fubject, that of the ancient philofophers feems to have been the moft fimple : they confidered the male femen as alone capable of forming the foetus, and belicved that the femate only afforded it a lodging in the womb, and fupplied, it with nourifhment after it was perfectly formed. This opinion, however, foon gave place to another, in which the female was allowed a more confiderable thare in conception.

This fecond fyftem confidered the foetus as being formed by the mixture of the feminal liquor of both fexes, by a certain arrangement of its feveral particles in the uterus. But in the ath century, velicles or eggs were difcovered in the ovaria or female tefticles; the foetus had been found fometimes in the abdomen, and fometimes in the Fallopian tubes; and the two former opinions were exploded in favour of a new doctrine. The ovaria were compared to a bunch of grapes, being fuppofed to conlift of veficles, each of which had a falk; fo that it might be difengaged without hurting the reft, or fpilling the liquor it contained. Each veficle was faid to include a little animal, almoft complete in all its parts; and the vapour of the male femen being conveyed to the ovarium, was fuppofed to produce a fermentation in the veficle, which approached the neareft to maturity; and thus inducing it to difengage ittelf from the ovarium, it paffed into the tuba Fallopiana, thro' which it was conveyed to the uterus. Here it was fuppofed to take root like a vegetable feed, and to form, with the vetiels originating from the uterus, what is called the placenta; by means of which the circulation is carricd on between the mother and the foetus.

This opinion, with all its alfurdities, continued to be almof univerfally adopted till the clofe of the fame century, when Lieuwenhoeck, by neans of his glatfes, difcovered certain opake particles, which he defcribed as fo many animalcula, floating in the feminal fluid of the male.

This difcovery introduced a new fchifm among the philofophers of that time, and gave rife to a fyftem which is not yet entirely exploded. According to this theory the male femen paffing into the tube FalJonianæ, one of the animalcula penetrates into the fubfance of the ovarinm, and enters into one of its veficles or ova. This impreenated ovinn is then fqueezed from its hum, throngh the coats of the ovarimm, and being feized by the fimbrix, is conducted through the tube to the uterus, where it is nourithed till it arrives at a
fate of perfection. In this fyftem there is much ingenuity but therc are certain circumftances fuppofed to take place, which have been hitherto inexplicable. A celcbrated modern writer, M. Bufion, endcavours to reftore, in fome meafure, the moft ancient opinion, by allowing the temale femen a fhare in this office; allerting, that animalcula or organic particles are to be difcovered in the feminal liquor of both fexes: he derives the female femen from the ovaria, and he contends that no ovum exifts in thofe parts. But in this idea he is evidently mistaken ; and the opinion now moft generally adopted is, that an impregnation of the ovum, by the influence of the male femen, is cffential to conception (s). That the ovum is to be impregnated, there can be no doubt; but as the manner in which fuch an impregnation is fuppofed to take place, and the means by which the ovum afterwards gets into the Fallopian tube, and from thence into the uterus, are fill founded chietly on liypothefis, we will not attempt to extend farther the inveftigation of a fubject concerning which fo little can be advanced with certainty.

§4. Of the Fatus in Utero.

Offortunities of diffecting the human gravid uterus occurring but feldom, the ftate of the embryo (T) immediately after conception cannot be perfectly known.

When the ovum defcends into the uterus, it is fuppofed to be very minute; and it is not till a confiderable time after conception that the rudiments of the embryo begin to be afcertained.

About the third or fourth week the eye may difcover the firft lineaments of the foetus ; but thefe lineaments are as yet very imperfect, it being only about the frze of a houfe-fly. Two little veffels appear in an almoft tranfparent jelly; the largeft of which is deftined to become the head of the fortus, and the other fmaller one is referved for the trunk. But at this period no extremities are to be feen; the umbilical cord appears only as a very minute thread, and the placenta does not as yet abforb the red particles of the blood. At fix weeks, not only the head but the features of the face begin to be developed. The nofe appears like a fmall prominent line, and we are able to difoover another line under it, which is deftined for the feparation of the lips. Two black points appear in the place of cyes, and two minute boles mark the ears. At the fides of the trunk, both above and below, we fee four minute protuberances, which are the rudiments of the arms and legs. At the end of eight wecks the body of the foctus is upwards of an inch in length, and both the hands and feet are to be diftinguifned. The upper extremicies are found to increafe fafter than the lower ones, and the feparation of the fingers is accomplifhed fooner than that of the toes.

At this period the human form may be decifively afcertained ; -all the parts of the face may be difinguifhed, the fhape of the body is clearly marked out, the haunches and the abdomen are elcvated, the fingers
(s) The learned Abbè Spallanzani has thown much light on this curions fubject, and has proved by a varicty of experiments that the anin:aleule exifts entire in the temaic ovom and that the male feed is only neceflary to vivify and put it in motion. - H^{r} is experiments and obfervationsare worthy the attentive perufal of every phyliologif.
(r) The rudiments of the child are "finly dininguifined by this name till the human figure can be diftinctiy afcertained, and then it has the appellation of feties.
and toes are feparatey from cach cther, and the inteftines appear like minute threads.

At the end of the thitd month, the foctus meafures about three inches; at the end of the fourth month, five inches; in the fifth month, fix or feven inches ; in the fixth month, eight or nine inches; in the feventh month, eleven or twelve inches; in the eighth month, fontteen or fifteen inches; and at the end of the ninth month, or full time, from eighteen to twenty-two inches. But as we have not an opportunity of examining the fame foetus at different periods of pregnancy, and as their fize and length may be influenced by the conftitution and mode of life of the mother, calculations of this kind muft be very uncertain.

The fertas during all this time aflumes an oval figure, which correfponds with the fhape of the uterus. Its chin is foend reclining on its breaft with its knees drawn utp towards its chin, and its arms folded over them. But it feems likely, that the pofture of fome of thefe parts is varied in the latter moaths of pregnancy, fo as to caufe thofe painful twitches which its mother ufually feels from time to time. In natural cafes, its head is probably placed towards the os tincæ from the time of conception to that of its birth; though formerly it was confidered as being placed towards the fundis ateri till about the eighih or niath month, when the head, by becoming fercifcally heavier than the other parts of the lody, was fuppofed to be turned downwards.

The capacity of the uterus increafes in proportion to the growth of the foetus, but without becoming thinner in its fubfance, as might naturally be expected. The nourithment of the foctus, daring all this time, feems to be derived from the placenta, which appcars to be originally formed by that part of the ovum which is next the fundus uteri. The remaining part of the ovum is covered by a membrane called jpongy chorion (U) ; within which is another called true chorion, which includes a third terned ammios (v) : this contains a watery fluid, which is the liquor omniii (w), in which the foetus floats till the time of its birth. On the fide next the foetus, the placenta is covered by the amnios and true chorion; on the fide next the mother it has a production continued from the fpongy chorion. The aminos and chorion are remarhably thin and tranfparent, having no blood-veficls entering into their
compofition. The fpongy chorion is opake and vafcular.
In the firft months of pregnancy, the involucra bear a large proportion to their contems; but this proportion is afterwards reverfed, as the foetus increafes in bulk.

The placenta, which is the medium through which the blood is conveyed from the mother to the foetus, and the manner in.which this conveyance takes place, deferve next to be confidered.

The placenta is a broad, flat, and fpongy fubftance, like a cake, clofely adhering to the inner furface of the womb, ufially near the fundus, and appearing to be chiefly made up of the ramifications of the umbilical arteries and vein, and partly of the extremities of the uterine veficls. The arteries of the uterus difcharge their contents into the fubftance of this cake; and the veins of the placenta, receiving the blood cither by a direct communication of veffels, or by abfoxption, at length form the umbilical vein, which palfes on to the finus of the vena porta, and from thence to the vena cava, by means of the canalis venofus, a communication that is clofed in the adult. But the circulation of the blood through the heart is not conducted in the foetus as in the adult: in the latter, the blood is carried from the right auricle of the heart through the pulmonary artery, and is ret.rned to the left auricle by the pulmonary vein; but a dilatation of the Dungs is enesttial to the paffage of the hood through the puln:onary velfels, and this dilatation cannot take place till atter the child is born and has refpired. This deficiency, however, is fupplied in the foetus by the immediate communication between the right and left auricle, through an oval opening, in the feptuma "hich divides the two amicles, called for amen orale. The blood is likenife tranfmitted trom the pulmonary artery to the zorta, by means of a duct called carialis aitcricfas, which, like the canalis venofus, and toramen ovalæ, gradually clofes atter birth.

The blood is returacd again from the foctus through two arteries called the unibili al arteries, which arife from the iiiacs. Thefe two veffels taking a winding courfe wiht the vein, form with that, and the niembranes by which they are furrounded, what is cailcd the unibuicai chord. Thefe arteries, after ramilying throngh the fubfance of the placenta, difcharge their blond into the veins of the uterus; in the fame manncr as the uterine arteries dilchatged their Llood into the branches

Of the
Abdomen.

1Prot. Whilud a

of the branches of the unbilical vein. So that the blood is gets through the placenta is a point not yet deterAbdomen. conftantly paffing in at one fide of the placenta and out at the othcr; but in what particular manner it mined.

EXPLANATION of PLATES XXV. XXVI. AND XXVII.

Plate XXV.

Fig. i. Shows the, Contents of the Thorax and Abdomen in fitu.
I. Top of the trachea, or wind-pipe. 22, The internal jugular veins. 3.3, The finbclavian veins. 4, The vena cava defcendens. 5, The riglit auricle of the heart. 6, The right ventricle. 7, Part of the left ventricle. 8, The aorta defcendens. 9, The pulmonary artery. 10, The right lung, part of which is cut off to fhow the great blood veffels. II, The left lung entire. 1212 , The anterior edge of the diaphragm. 1313 , The two great lobes of the liver. 14, The ligamentum. rotundum. 15, The gali-bladder. 16 The ftomach. 17 17, The jejunum and iliun. 18, The fplcen.
Fig. 2. Shows the Organs fubfervient to the Chylopoietic Vifcera,-with thofe of Urine and Generation.
I 1 , The under fide of the tiwn great lobes of the liver. a, Lobulus Spigelii. 2, The ligamentum rotundam. 3, The gall-bladder. 4. The pancreas. 5, The fpleen. 66 , The kidneys. 7, The aorta defeendens. 8, Vena eava afcendens. 99 , The renal veins covering the arteries. 10, A probe under the fpermatic vellels and a bit of the inferior mefenteric artery, and over the ureters. II II, The ureters. 12 12, The iliac arteries and veins. 13, The rectum inteftinum. 14, The bladder of urine.
Fig. 3. Shows the Chylopoietic Vifeera, and Organs fubfervient to them, taken ont of the Body entire.
A A, The under fide of the two great lobes of the liver. B, Lifamentum rotundum. C, The gallbladder. D, Duetus cyfticus. E, Ductus hepaticus. F, Ductus communis choledochus. G, Vena portaram. H, Arteria hepatica. I I, The ftomach. K K, Venæ \& arteriæ gaftro-epiploicæ, dextræ \& finiftræ. L L, Venæ \& arteriæ coronariæ ventriculi. M, The fpleen. N N, Mefocolon, with its veffels. OOO, Inteftinum colon. P, One of the ligaments of the colon, whieh is a bundle of longitudinal mufcular fibres. QQQQ, Jcjunum and ilium. R R, Sigmoid flexure of the colon with the ligament continued, and over S , The rectum inteftinum. T T, Levatores ani. U, Sphincter ani. V, The place to which the proftate gland is comeeted. W, The anus.
Fig. 4. Shows the Fieart of a Fœtus at the full time, with the Right Auricle cut open to fhow the Foranen Ovale, or paffage between both Atiricles.
a, The right ventricle. b, The left ventricie. cc, The outer fide of the right auricle ftetched out. d d, The pofterior fide, which forms the anterior lide of the feptum. c, The foramen ovalc, with the membrane or valve which covcrs the lefr fide. f, Vena ca-
va inferior paffing through g, A portion of the diaphragm.
Fig. 5. Shows the Heart and Large Veffels of a Fuetus at the full time.
a, The left ventricle. b, The right ventricle. c, A part of the right auricle. d, Left auricle. e e , The right branch of the pulmonary artery. f, Arteria pulmonalis. g g , The left branch of the pulmonary artery, with a number of its largeft branches diffected: from the lungs. h, The canalis arteriofus. i, The arch of the aorta. $\mathrm{k} k$, The aorta defcendens. 1 , The. left fubclavian artery. m , The left carotid artery. n , The right carotid artery. o , The right fubclavian artery. p, The origin of the right carotid and rightfubclavian arteries in one common trunk. q, The vena cava fuperior or defcendens. r, The right common fubclavian vein. s, The left common fubclavian vein.
N. B. All the parts defcribed in this figure are to be found in the adult, except the canalis arteriofus.

Plate XXVI.

Fig. 1. Exhibits the more fuperficial Lymphatic Veffels of the Lower Extremity.
A, The fpine of the os ilium. B, The os pubis. C, The iliac artery. D, The knee. E, E, F; Branches of the crural artery. G, The nufculus gaftrocnemins. H , The tibia. I, The tendon of the mufculus tibialis anticus. On the out-lines, a, A lymphatic veffel belonging to the top of the foot. b , Its frrf divifion into branches. c, c, c, Other divifions of the fame lymphatic veffel. d, A fimall lymphatic gland. e, The lymphatic vefficls which lie between the fikin and the mufcles of the thigh. f, f, Two lymphatic glands at the upper part of the thigh below the groin. $\mathrm{g}, \mathrm{g}, \mathrm{O}$ ther glands. h, A lymphatic veifel which paffes by the fide of thofe glands without communicating with them ; and, bending towards the infide of the groin at (i), opens into the lymphatic gland (k). 1, 1, Lymphatic glands in the groin, which are common to the lymphatic veffels of the genitals and thofe of the lower extremity. m, n, A plexus of lymphatic veffels paffing on the infide of the iliac artcry.
Fig. 2. Exhibits a Back View of the Lower Extremity, diffected fo as to fhow the dcepcr-feated Lymphatic Veffels which accompany the Arterics.
A, The os pubis. B, The tuberofity of the if chium. C, That part of the os iliam which was articulated with the os facrum. D, The exrremity of the iliac artery appearing above the groin. E, The knee. F F, The two cut furfaces of the triceps nufcle, which was divided to fhow the lymphatic veffels that pafs throigh its perforation along with the crural artery. G, The edge of the mufculus gracilis. EI, The gaftocnemins and foleus, much thrunk. by being dried, and by the folens being feparated from

$\begin{array}{lllllll}\mathrm{A} & \mathrm{N} & \mathrm{A} & \mathrm{T} & \mathrm{O} & \mathrm{M} & \mathrm{Y} .\end{array}$

the tibia to expofe the vefels. I, The hecl. K, The fole of the foot. L, The fuperficial lymphatic veffiels paffing over the knee, to get to the thigh. On the out-lines; M, The pofterior tibial artcry. a, A lymphatic veffel accompanying the pofterior tibial artery. b, The fame veffel croffing the artery. c, A fimall lymphatic gland, thro' which this deep-feated lymphatic veffel paffes. d, The lymphatic veffel paffing under a fmall part of the foleus, which is left attachicd to the bone, the reft being removed. e, The lymphatic veffel croffing the popliteal artery. f, g , h, Lymphatic glands in the ham, through which the lymphatic veffel pafies. i, The lympliatic veffel pafling with the crural artery, through the perforation of the triceps mufcle. k, The lymphatic veffel, after it has paffed the perforation of the triceps, dividing into branches which embrace the artery (1). m, A lymphatic gland belonging to the deep-feated lymphatic veffel. At this place thofe veffels pafs to the fore part of the groin, where they communicate with the fuperficial lymphatic veffels. n, A part of the fuperficial lymphatic veffel appearing on the brim of the pelvis.

Fig. 3. Exhibits the Trunk of the Human Subject, prepared to flow the Lymphatic Veffels and the Ductus Thoracicus.
A, The neck. B B, The two jugular veins. C, The vena cava fuperior. D D D D, The fubclavian veins. E, The beginning of the aorta, pulled to the left fide by means of a ligature, in order to fhow the thoracic duct behind it. F, The branches arifing from the curvature of the aorta. G G, The two carotid arteries. H H, The firtt ribs, II, The trachea. K K, The fpinc. L L, the vena azygos. M M, The defcending aorta. N, The cœliac artery, dividing into three branches. O, The fuperior mefenteric artery. P, The right crus diaphragmatis. Q , The two kidneys. R, The right emulgent artery. S S, The external iliac artcries. g d, The mufculi pfox. T, The internal iliac artery. U, The cavity of the pelvis. X X, The fpine of the os ilium. $\mathrm{Y} Y$, The groins. a, A lymphatic gland in the groin, into which lymphatic veffels from the lower extremity are feen to enter. $b b$, The lymphatic veffels of the lower extremities pafing under Poupart's ligament. $c c$, A plexus of the lymphatic veffels lying on each fide of the pelvis. d, The proas mufcle with lymphatic veffels lying upon its infide. e, A plexus of lymphatics, which having paffed over the brim of the pelvis at (c), having entered the cavity of the pelvis, and received the lymphatic veffels belonging to the vifcera contained in that cavity, next afcends, and paffes behind the iliac artery to $(g) . f$, Some lymphatic veffels of the left fide paffing over the upper part of the os facrum, to meet thofe of the right fide. g, The right pfoas, with a large plexus of lymphatics lying on its infide. $b h$, The plexus lying on each fide of the fpine. ii i, Spaces occupied by the lymphatic glands. k, The trunk of the lacteals, lying on the under fide of the fuperior mefenteric artery. l, The fame dividing into two branches, one of which paffes on each fide of the aorta; that of the right fide being feen to enter the thoracic duct at (m). m, The thoracic duet beginning from the large lymphatics. n, The duct pafsing under the lower part of the crus diaphragmatis,
and under the right emulgent artery. o, The thoracic duet penctrating the thorax. p, Some lymphatic Abdome vefiels joing that duct in the thorax. q, The thoracis joining that dider the curvature of the aorta to get to the left fubclavian vein. The aorta being drawn afide to flow the dut. r, A plexus of lymplatic veffels paffing upon the trachea from the thyroid gland to the thoracic duct.

Plate XXVIl.

Fig. I. Reprefents the Under and Pofterior Side of the Bladder of Urine, \&c.
a , The bladder. $\mathrm{b} b$, The infertion of the ureters. c c, The vafa deferentia, which convey the femen from the tefticles to d d, The veficulx feminales,-and pafs through e, The proftate gland, to difcharge themfelves into f, The beginning of the urethra.

Fic. 2. A tranfverfe Section of the Penis.
g g, Corpora cavernofa penis. h , Corpus cavernofum urethræ. i, Urethra. k, Septum penis. 11, The feptum between the corpus cavernofum urethre and that of the penis.

Fig. 3. A Longitudinal Section of the Penis.
mm , The corpora cavernofa penis, divided by 0 , The feptum penis. n, The corpus cavernofum glandis, which is the continuation of that of the urechra.
Fig. 4. Reprefents the Female Organs of Generation.
a, That fide of the uterus which is next the os facrum. I, Its fundus. 2, Its cervix. b b, The Fatlopian or uterine tubes, which open into the cavity of the uterus ;-but the other end is open within the pelvis, and furrounded by c c, The fimbrix. d d, The ovaria. e, The os internum uteri, or mouth of the womb. ff, The ligamenta rotunda, which paffes without the belly, and is fixed to the labia pudendi. g g , The cut edges of the ligamenta lata, which conneets the uterus to the pelvis. h, The infide of the vagina. i, The orifice of the urethra. k, The clitoris furrounded by (1,) The præputium. m m , The labia pudendi. n n, The nymphæ.
Fig. 5. Shows the Spermatic Ducts of the Tefticle filled with Mercury.
A, The vas deferens. B, Its beginning, which forms the pofterior part of the epididymis. B, The middle of the epididymis, compofed of ferpentine ducts. D, The head or anterior part of the epididymis unravelled. e e e e, The whole ducts which compofe the head of the epididymis unravelled. $f f$, The vafa deferentia. g g, Rete teftis. h h, Some rectilineal ducts which fend off the vafa deferentia. ii, The fubftance of the tefticle.
Fig. 6. The right Teficle entire, and the Epididymis filled with Mercury.
A, The beginning of the vas defercns. B, The vas deferens afcending towards the abdomen. C, The pofterior part of the epididymis, named globus minor. D, The fpermatic veffels inclofed in cellular fubftance. E, The body of the epididymis. F, Its head, named globus major. G, Its beginning from the tefticle. H , The body of the tefticle, inclofed in the tunica albnginea.

PAR T

Part IV. Of the THORAX.

THE Thorax, or chest, is that cavity of the trunk which extends from the clavicles, or the lower part of the neck, to the diaphragm, and includes the vital organs, which are the heart and lungs; and likewife the trachea and œfophagus. - This cavity is formed by the ribs and vertebræ of the back, covered by a great number of mufcles, and by the common integuments, and anteriorly by two glandular bodies called the breafts. The fpaces between the ribs are filled up by mufcular fibres, which from their fituation are called intercoftal mufcles.

Sест. I. Of the Breafts.

152. The breafts may be defined to be two large conglomerate glands, mixed with a good deal of adipofe membrane. The glandular part is compofed of an infinite number of minute arteries, veins, and nerves.

The arteries are derived from two different trunks; one of which is called the internal, and the other the external, mammary artery. The firf of thefe arifes from the fubclavian, and the latter from the axillary.

The veins every where accompany the arteries, and are diftinguifhed by the fame name. The nerves are chiefly from the vertebral pairs. Like all other conglomerate glands, the breafts are made up of a great many fmall diftinct glands, in which the milk is fecreted from the ultimate branches of arteries. The excretory ducts of thefe feveral glands gradually uniting as they approach the nipple, form the tubuli lactiferi, which are uftally more than a dozen in number, and open at its apex, but have little or no communication, as has been fuppofed, at the root of the nipple. Thefe ducts, in their courfe from the glands, are furrounded by a ligamentary elaftic fubftance, which terminates with them in the nipple. Both this fubftance, and the ducts which it contains, are capable of confiderable extenfion and contraction; but in their natural ftate are moderately corrugated, fo as to prevent an involuntary flow of milk, unlefs the diftending force be very great from the accumulation of too great a quantity.

The whole fubftance of the nipple is very fongy and elaftic: its external furface is uneven, and full of fmall tubercles. The nipple is furrounded with a difk or circle of a different colour, called the areola; and on the infide of the fkin, under the areola, are inany febaceous glands, which pour out a mucus to defend the areola and nipple : for the fkin upon thefe parts is very thin; and the nervous papillæ lying very bare, are much expofed to irritation.

The breafts are formed for the fecretion of milk, which is deftined for the nourifhment of the cliild for fome time after its birth. This fecretion begins to take place foon after delivery, and continues to flow for
many months in very large quantities, if the woman fuckles her child.

The operation of fuction depends on the principles of the air-pump, and the flow of milk througl the lactiferous tubes is facilitated by their being ftretched out.

The milk, examined chemically, appears to be compofed of oil, mucilage, and water, and of a confiderable quantity of fugar. The generality of phyfiologifts have fuppofed that, like the chyle, it frequently retains the properties of the aliment and medicines taken into the fomach; but from fome late experiments *, "Yourn. de this fuppofition appears to be ill-founded.

Sect. II. Of the Pleura.

The cavity of the thorax is every where lined by a membrane of a firm texture called pleura. It is compofed of two diftinet portions or bags, which, by being applied to each other laterally, form a feptum called mediaflinum; which divides the cavity into two parts, and is attached pofteriorly to the vertebre of the back, and anteriorly to the fternum. But the two laminæ of which this feptum is formed, do not every where adhere to each other ; for at the lower part of the thorax they are feparated, to afford a lodgment to the lieart ; and at the upper part of the cavity, they receive between them the thymus.

The pleura is plentifully fupplied with arteries and veins from the internal mammary and the intercoltals. Its nerves, which are very inconfiderable, are derived chiefly from the dorfal and intercoftal nerves.

The furface of the pleura, like that of the peritonæum and other membranes lining cavities, is conftantly bedewed with a ferous moifture (w) which prevents adhefion of the vifcera.

The mediaftinum, by dividing the breaft into two cavities, obviates many inconveniences, to which we fhould otherwife be liable. It prevents the two lobes of the lungs from compreffing each other when we lie on one fide; and confequently contributes to the freedom of refpiration, which is difturbed by the leaft preffure on the lungs. If the point of a fword penetrates between the ribs into the cavity of the thorax, the lungs on that fide ceafe to perform their office; becaufe the air being admitted through the wound, prevents the dilatation of that lobe; while the other lobe, which is feparated from it by the mediaftinum, remains unlurt, and continues to perform its function as ufual.

Sест. II. Of the Thymus.

The thymus is a glandular fubfance, the ufe of which is not perfectly afcertained, its excretory duct not laving yet been difcovered. It is of an oblong 5B
figure,
(w) When this fluid is exhaled in too great a quantity, or is not properly carried off, it accumulates and confitutes the hydrops pectoris.
figure, and is larger in the foetus and in young children than in adults, being fometimes nearly effaced in very old fubjects. It is placed in the upper part of the thorax, between the two laminæ of the mediaftinum; but at firt is not altogether contained within the cavity of the cheft, being found to border upon the upper extremity of the fternum.

SEct. IV. Of the Diaphragm.

The cavity of the thorax is fcparated from that of the abdomen, by a flefhy and membranous fubftance called the diaphragnz or midriff. The greateft part of it is compofed of mufcular fibres; and on this account fyftematic writers ufually place it very properly among the mufcles. Its middle part is tendinous, and it is covered by the pleura above, and by the peritonxum below. It feems to have been improperly named feptum tranfuerfum, as it does not make a plane tranfverfe divifion of the two cavities, but forms a kind of vault, the fore-part of which is attached to the fernum. Laterally it is fixed to the laft of the true ribs, and to all the falfe ribs; and its lower and pofterior part is attached to the vertebre lumborum, where it may be faid to be divided into two portions or crura (x).

The principal arteries of the diaphragm are derived from the aorta, and its veins pals into the vena cava. Its 1 erves are chiefly derived from the cervical pairs. It affords a paffage to the vena cava through its tendinous part, and to the œefophagus through its flefhy portion. The aorta paffes down behind it between its crura.

The diaphragm not only ferves to divide the thorax from the abdomen, but by its mufcular ftructure is rendered one of the chief agents in refpiration. When its fibres contract, its convex fide, which is turned towards the thorax, becomes gradually flat, and by increafing the cavity of the breaft, affords room for a complete dilatation of the lungs, by means of the air which is then drawn into them by the act of infpiration. The fibres of the diaphragm then relax; and as it refumes its former flate, the cavity of the thorax becomes gradually diminiflhed, and the air is driven out agdin from the lungs by a motion contrary to the former one, called exfpiration.

It is in fome meafiure, by means of the diaphragm, that we void the frecs at the anus, and empty the urinary bladder. Befides thefe offices, the acts of coughing, freezing, fpeaking, laughing, gapmg, and fighing, could not take place without its affiftance; and the gentle preffure which all the abdominal vifcera rective from its conftant and regurar motion, cannot fail to affift in the performance of the feveral functions which were afcribed to thofe vifcera.
SEct. V. Of the Trachea.

Ot the
Thorax.
116.

The trachea or windpipe, is a cartilaginous and membranous canal, through which the air palfes into the lungs. Its upper part, which is called the larymx, is compofed of five cartilages. The uppermof of thefe cartilages is placed over the gluttis or mouth of the larynx, and is called epiglottis, which has becn before fpoken of, as clofing the paffage to the lungs in the att of fiwallowing. At the fides of the glottis are placed the two arytenoide cartilages, which are of a very complex figure, not eafy to be defcribed. The anterior and larger part of the larynx is made up of two cartilages; one of which is called thy roides or foutiformis, from its being flaped like a buckler; and the other cricoides or annularis, from its refembling a ring. Both thefe cartilages may be felt iminediately under the fkin, at the fore-part of the throat, and the thyroides, by its convexity, forms an eminence called pomum adami, which is uffually more confiderable in the male than in the female fubject.

All thefe cartilages are united to each other by means of very elaftic, ligamentous fibres; and are enabled, by the affiftance of their feveral mufcles, to dilate or contract the paffage of the larynx, and to perform that variety of motion which feems to point out the larynx as the principal organ of the voice; for when the air paffes out through a wound in the trachea, it produces no found.
Thefe cartilages are moiftencd by a mucus, which feems to be fecreted by minute glands fituated near them. The upper part of the trachea is covered anteriorly and laterally by a confiderable body, which is fuppofed to be of a glandular ftructure, and from its fituation near the thyroid cartilage is called the thyroid gland; though its excretory duet has not yet been difcovercd, or its ufe afcertained.
The glottis is interiorly covered by a very fine meinbrane, which is moittened by a conftant fupply of a watery fluid. From the larynx the canal begins to take the name of trachea or afpera arteria, and extends from thence as far down as the third or fourth vertebra of the back, where it divides into two branches, which are the right and left bronchial tube. Each of thefe bronchi (Y) ramifies throngh the fubstance of that lobe of the lungs to which it is diftributed, by an infinite number of branches, which are formed of cartilages feparated from each other like thofe of the trachea, by an intervening membranous and ligamentary fubftance. Each of thefc cartilages is of an angular figure; and as they become gradually lefs and lefs in their diameter, the lower ones are in forme meafure received into thofe above them, when the lungs, after bcing inflated, gradually collapfe by the air being pufh-
(x) Anatomical writers have ufually defcribed the diaphragin as being made up of two mufcles united by a middle tendon; and thefe two portions or crura form what they feak of as the inferior mufcle, arifing from the fides and forc-part of the vertebre.
(v) The right bronchial tube is ufually found to bc fomewhat fhorter and thicker than the left; and M. Portal, who has publilhed a memoir on the action of the longs on the aorta in refpiration, obferves, that the left bronchial tube is clofely conneced by the aorta; and from fonc cxperiments he is induced to conclude, that in the firt refpirations, the air only enters into the right lobe of the lungs. Menuoires de l'Acadenie Royale des Sciences, 1769.
of the ed out from them in exfpiration. As the branches of Thorax. the bronchi become more minute, their cartilages be-
come more and more angular and membranons, till at length they are found to be perfectly membranons, and at laft become invifible.

The trachea is furnifhed with flefly or mufcular fibres; fome of which pafs through its whole extent longitudinally, while the others are carried round it in a circular direction; fo that by the contraction or relaxation of thefe fibres, it is enabled to fhorten or lengthen itfelf, and likewife to dilate or contract the diameter of its paffage.

The trachea and its branches, in all their ramifications, are furnifhed with a great number of fmall glands which are lodged in their cellular fubftance, and difcharge a mucous fluid on the inner furface of thefe tubes.

The cartilages of the trachea, by keeping it conftantly open, afford a free paffage to the air, which we are obliged to be inceffantly refpiring; and its membranows part, by being capable of contraction and dilatation, enables us to receive and expel the air in a greater or lefs quantity, and with more or lefs velocity, as may be requircd in finging or in declamation. This membranous ftructure of the trachea pofteriorly, feems likewife to affift in the defcent of the food, by preventing that impediment to its paflage down the œefophagus, which might be expected if the cartilages were complete rings.
The trachea receives its arteries from the carotid and fubclavian arteries, and its veins pals into the jugulars. Its nerves arife from the recurrent branch of the eighth pair, and from the cervical plexus.

Sect. VI. Of the Lungs.

The lungs fill the greater part of the cavity of the breaft. They are of a foft and fpongy texture, and are divided into two lobes, wlich are feparated from each other by the mediaftinum, and are externally covered by a production of the pleura. Each of thefe is divided into two or three leffer lobes; and we commonly find three in the right fide of the cavity, and two in the left.
To difcover the ftructure of the lungs, it is required to follow the ramifications of the bronchi, which were defribed in the laft fection. Thefe becoming gradually more and more minute, at length terminate in the cellular fpaces or veficles, which make up the greatert part of the fubfance of the lungs, and readily communicate with each other.

The lungs feem to poffefs but little fenfibility. Their nerves, which are fmall, and few in number, are derived from the intercoftal and cighth pair. This laft pair having reached the thorax, fends off a branch on each fide of the trachea, called the recurrent, which reafcends at the back of the trachea, to which it furnifhes branches in its afcent, as well as to the œfophagus, but it is chiefly diftributed to the larynx and its mufeles. By dividing the recurrent and fuperior laryngeal nerves at their origin, an animal is deprived of its voice.

There are two feries of arteries which carry blood to the lungs : thefe are the arterix bronchiales, and the pulmonary artery.

The arterix bronchiales begin ufually by two branch-
es; one of which commonly arifes from the right intercoftal, and the other from the trunk of the aorta: but fometimes there are three of thefe arteries, and in fome fubjects only one. The ufe of thefe arteries is to ferve for the nourifhment of the lungs, and their ramifications are feen creeping every where on the brancles of the bronchi. The blood is brought back from them by the bronchial vein into the vena azygos.

The pulmonary artery and vein are not intended for the nourifhment of the lungs; but the blood in its paffage through them is deftined to undergo fome changes, or to acquire certain effential properties (from: the action of the air), which it has loft in its circulation through the other parts of the body. The pulmonary artery receives the blood from the right ventricle of the heart, and dividing into two branches, accompanies the bronchi cvery where, by its ramifications through the lungs; and the blood is afterwards conveyed back by the pulmonary vein, which gradually forming a confiderable trunk, goes to empty itfelf into the left ventricle of the heart; fo that the quantity of blood which enters into the lungs, is perhaps greater than that which is fent in the fame proportion of time through all the other parts of the body.

Sect. VII. Of Refpiration.

Respiration conftitutes one of thofe functions which are properly termed vital, as being effential to life; for to live and to breathe are in fact fynonymous terms. It confifts in an alternate contraction and dilatation of the thorax, by firft infpiring air into the lungs, and then expelling it from them in expiration.

It will perhaps be eafy to diftinguifh and point out the feveral phenomena of refpiration; but to explain their pliyfical caufe will be attended with difficulty: for it will naturally be enquired, how the lungs, when emptied of the air, and contracted by exfpiration, become again inflated, they themfelves being perfectly paffive? How the ribs are elevated in oppofition to their own natural fituation? and why the diaphragm is contracted downwards towards the aldomen? Were we to affert that the air, by forcing its way into the cavity of the lungs, dilated them, and confequently elevated the ribs, and preffed down the diaphragm, we flould fpeak crroneoufly. What induces the firft infpiration, it is not eafy to afcertain; but after an animal has once refpired, it would feem likely that the blood, after exfpiration, finding its paffage through the lungs obftructed, becomes a ftimulus, which induces the intercoftal mufcles and the diaphragm to contract, and enldrge the cavity of the thorax, in confequence perhaps of a certain nervous influence, which we will not here attempt to explain. The air then rufhes into the lungs; every branch of the bronchial tubes, and all the cellular fpaces into which they open, beconc fully dilated; and the pulmonary veffels being equally diftended, the blood flows throngh them with eafe. But as the fimulus which firft occafioned this dilatation ceafes to operate, the mufcles gradually contract, the diaphragm rifes upwards again, and diminifhes the cavity of the cheft ; the ribs return to their former ftate; and as the air paffes out in exfpiration, the lungs gradually collapfe, and a refiftance to the paffage of the blood agan takes place. But the heart continuing to receive and expel the 5 E 2
blood
blood, the pulmonary artery begins again to be diftend. ed, the ftimulus is renewed, and the fame procefs is repeaced, and continucs to be repeated, in a regular fuccefion, during life: for though the mufcles of refpiration, having a mixed motion, are (unlike the heart) in fome meafure dependent on the will, yet no human being, after having once refpired, can live many moments without it. In an attempt to hold one's breath, the blood foon begins to diftend the veins, which are unable to empty their contents into the heart; and we are able only, during a very little time, to refift the fimulus to infpiration. In drowning, the circulation feems to be ftopped upon this principle; and in hanging, the preffure made on the jugular veins, may cooperate with the ftoppage of refipiration in bringing on death.

Till within thefe few years phyfiologifts were entirely ignorant of the ufe of refpiration. It was at length difcovered in part by the illuftrious Dr Prieftley. He found that the air exfpired by animals was phlogitticated; and that the air was fitter for refpiration, or for fupporting animal life, in proportion as it was freer from the phlogiftic principle. It had long been obferved, that the blood in paffing throngh the lungs acquired a more florid colour. He therefore fufpected, that it was owing to its having inparted phlogifton to the air: and he fatisfied himfelf of the truth of this idea, by experiments, which howed, that the craffementum of extravafated blood, phlogifticated air in proportion as it loft its dark colour. He farther found, that blood thus reddened had a ftrong attraction for phlogifton; infomuch that it was capable of taking it from phlogifticated air, thereby becoming of a darker colour. From hence it appeared that the blood, in its circulation through the arterial fyftem, imbibes a confiderable quantity of phlogifton, which is difcharged from it to the air in the lnggs.

This difcovery has fince been profecuted by two very ingenious phyfiologifts, Dr Crawford and Mr Elliot. Ir had been fhown by profeffors Black and Irvine, that different bodies have different capacities for containing fire. For example, that oil and water, when equally hot to the fenfe and the thermometer, contain different proportions of that principle ; and that unequal quantities of it are required, in order to raife thofe fubfances to like temperatures. The enquiries of Dr Crawford and Mr Elliot tend to prove, that the capacities of bodies for containing fire are diminifhed by the addition of phlogifton, and increafed by its feparation : the capacity of calx of antimony, for example, being greater than that of the antimony itfelf. Common air contains a great quantity of fire ; combuftible bodies very little. In combuftion, a double elective attraction takes place; the phlogifton of the body being transferred to the air, the fire contained in the air to the combuftible body. But as the capacity of the latter is not increafed fo much as that of the former is dimini角ed, only part of the extricated fire will be abforbed by the body. The remainder therefore will raife the temperature of the compound; and hence we may account for the heat attending combuftion. As the
ufe of refpiration is to dephlogificate the blood, it feens probable, that a like double clective attraction takes place in this procefs; the phlogifton of the blood being transferred to the air, and the fire contained in the air to the blood; but with this difference, that the capacities being equal, the whole of the extricated firc is abfurbed by the latter. The blood in this fate circulating through the body, imbibes phlogitton, and of courfe gives out its fire; part only of which is abforbed by the parts furnifhing the phlogiftor, the remaindcr, as in combuttion, becoming fenfible; and is therefore the caufe of the heat of the body, or what is called animal heat.

In confirmation of this doctrine it may be obferved, that the venous blood contains lefs fire than the arterial; combuftible bodies lefs than incombuftible ones; and that air contains lefs of this principle, according as it is rendered, by combination with phlogiton, lefs fit for refpiration (z).

In afcending very high mountains, refpiration is found to become fhort and frequent, and fometimes to be attended with a fitting of blood. Thefe fymptoms feem to be occafioned by the air being too rare and thin to dilate the lungs fufficiently; and the blood gradually accumulating in the pulmonary veffels, fometimes burfts through their coats, and is brought up by coughing. This has likewife been accounted for in a different way, by fuppofing that the air contained in the blood, not receiving an equal preffure from that of the atmofphere, expands, and at length ruptures the very minute hranches of the pulnonary veffels; upon the fame principle that fruits and animals put under the receiver of an air-pump, are feen to fwell as the outer air becomes exhaufted. But Dr Darwin of Litchfield has lately publifhed fome experiments, which feem to prove, that no air or elaftic vapour does exift in the blood-veffels, as has been generally fuppofed; and he is induced to impute the fitting of blood, which has fometimes taken place in afcending high mountains, to accident, or to violent cxertions; as it never happens to animals that are put into the exhaufted receiver of an air-pump, where the diminution of preffure is many timies greater than on the fummit of the higheft mountains.

Sect. VIII. Of the Voice.

Respiration has already been defcribed as affording us many advantages; and next to that of life, its moft important ufe fcerrs to be that of forming the voice and fpeech. The ancients, and almoft all the moderns, have confidered the organ of fpeech as a kind of minfical inftrument, which nuay be compared to a flute, to an hautboy, to an organ, \&c. and they argue after the following manner.

The trachca, which begins at the root of the tongue, and goes to terminate in the lungs, may be compared to the pipe of an organ, the lungs dilating like bellows during the time of infpiration; and as the air is driven out from them in exfpiration, it finds its paffage fraitened by the cartilages of the larynx, againft which it frikes.
(z) See Crawford's Experiments and Obfervations on Animal Heat, and Elliot's Philofophical Obfervations.

Of the ftrikes. As thefe eartilages are more or lefs elaftic, Thorax. they occafion ins their turn more or lefs vibration in the air, and thus produce the found of the voice ; the variation in the found and tone of which depends on the ftate of the glottis, which, when ftraitened, produces all acute tone, and a grave one when dilated.

The late M. Ferein communicated to the French Academy of Sciences a very ingenious theory on the formation of the voice. He confidered the organ of the voice as a fring, as well as a wind, inftrument ; fo that what art has hitherto been unable to conftruct, and what both the fathers Merfenne and Kircher fo much wifhed to fee, M. F'erein imagined he had at length difcovered in the human body. He obferves, that there are at the edges of the glottis certain tendi1100 chords, placed horizontally acrofs it, which are capable of confiderable vibration, fo as to produce found, in the fame manner as it is produced by the ftrings of a violin or a harpfichord : and he fuppofes that the air, as it paffes out from the lungs, acts as a bow on thefe ftrings, while the efforts of the breaft and lungs regulate its motion, and produce the variety of tones. So that according to this fyftem the variation in the voice is not occafioned by the dilatation or contraction of the glottis, but by the diftenfion or relaxation of thefe ftrings, the found being more or lefs acute in proportion as they are more or lefs ftretched out. Another writer on this fubject fuppofes, that the organ of voice is a double inftrument, which produces in unifon two founds of a different nature ; one by means of the air, and the other by means of the chords of the glottis. Neither of thefe fyftems, however, are univerfally adopted. They are both liable to infuperable difficulties; fo, that the manner in which the voice is formed has never yet been fatisfactorily afcertained: we may obferve, however, that the found produced by the glottis is not articulated. To effect this, it is required to pafs through the mouth, where it is differently modified by the action of the tongue, which is either puihed againft the teeth, or upwards towards the palate; detaining it in its paflage, or permitting it to flow freely, by contracting or dilating the mouth.

Sect. IX. Of Dejection.
By dcjection we mean the act of voiding the freces at the anus; and an account of the manner in which this is conducted was referved for this part of the work, becaufe it feemed to require a knowledge of refpiration to be perfectly underitood.

The inteftines were defcribed as having a periftaltic motion, by which the fæces were gradually advancing towards the anus. Now, whenever the fæces are accumulated in the inteftinum rectum in a fufficient quantity to become troublefome, either by their weight or acrimony, they excite a certain uneafinefs which induces us to go to ftool. -To effect this, we begin by making a conliderable infpiration; in confequence of which the diaphragm is carried downwards towards the lower belly; the abdominal mufcles are at the fame time contracted in obedience to the will; and the inteftines being compreffed on all fides, the reliftance of the $\int p$ buncter is overcome, and the fæces pafs out at the anus; which is dfterwards drawn up by its longitudinal fibres, which are called levatores ani, and then by
means of its $\int p$ hincter is again contracted : but it fometimes happens, as in dyfenteries for inftance, that the fæces are very liquid, and have confiderable acrimony; and then the irritation they occafion is more frequent, fo as to promote their difcharge without any preffure from the diaphragm or abdominal mufcles ; and fometimes involuntarily, as is the cafe when the fphincter becomes paralytic.

Sect. X. Of the Pericardium, and of the Heart and its Auracles.

The two membranous bags of the pleura, which were defcribed as forming the mediaftinum, recede one Pericar- from the other, fo as to afford a lodgment to a firm dium. membranous fac, in which the heart is fecurely lodged; this fac, which is the pericardium, appears to be compofed of two tunics, united to each other by cellular membrane.-The outer coat, which is thick, and in fome places of tendinous complexion, is a production of the mediaftinum ; the inner coat, which is extremely thin, is reflected over the auricles and ventricles of the heart, in the fame manner as the tunica conjunctiva, after lining the eye lids, is reflected over the eye.

This bag adheres to the tendinous part of the diaphragm, and contains a coagulable lymph, the liquor pericardii, which ferves to lubricate the heart and facilitate its motions; and feems to be fecreted and abforbed in the fame manner as it is in the other cavitics of the body.

The arteries of the pericardium are derived from the phrcnic, and its veins pafs into veins of the fame name; its nerves are likewife branches of the phrenic.

The fize of the pericardium is adapted to that of the heart, being uftally large enough to contain it loofely. As its cavity does not extend to the fternum, the langs cover it in infpiration ; and as it every where invefts the heart, it effectually fccures it from being injured by lymph, pus, or any other fluid, extravafated into the cavities of the thorax.

The heart is a hollow mufcle of a conical fhape, fi- Heart, ar thated tranfverfely between the two laminx of the me- its auricle diaftinum, at the lower part of the thorax ; having its bafis turned towards the right fide, and its point or apex towards the left.-Its lower furface is fomewhat flattened towards the diaphragm. Its bafis, from which the great veffels originate, is covered with fat, and it has two hollow and flefhy appendages, called auricles.-Round thefe feveral openings, the heart fcems to be of a firm ligamentons texture, from which all its fibres feem to originate ; and as they advance from thence towards the apex, the fubftance of the heart feems to become thinner.

The heart includes two cavities of ventricles, which are feparated from each other by a flefhy feptum ; one of thefe is called the right, and the other the left, ventricle ; though perhaps, with refped to their fituation, it woild be more proper to diftinguif them into the anterior and pofterior ventricles.

The heart is exteriorly covered by a very fine membrane; and its ftructure is perfectly mufcular or flefhy, being compofed of fibres which are defcribed as paffing in different directions; forne as being extended longitudinally from the bafis to the apex; others, as taking an oblique or fpiral courfe; and a third fort asbeing
being placed in a tranverfe direction (A).-Within the two ventricles we obferve feveral furrows; and there are likewife tendinous ftrings, which arife from flefhy columne in the two cavities, and are attached to the valves of the auricles: That the ufe of thefe and the other vaives of the heart may be underftood, it muft be obferved, that four large veffels pafs out from the bafis of the lieart, viz. two arteries and two veins; and that each of thefe veffels is furnifhed with a thin membranous production, which is attached all round to the borders of their feveral orifices, from whence hanging loofely down they appear to be divided into two or three diftinct portions. But as their nfes in the arteries and veins are different, fo are they differently difpofed. Thofe of the arteries are intended to give way to the paffage of the blood into them from the ventricles, but to oppofe its return : and, on the contrary, the valves of the veins are conftructed fo as to allow the blood only to pals into the heart. In confequence of thele different ufes, we find the valves of the pulmonary artery and of the aorta attached to the orifices of thofe veffels, fo as to have their concave firfaces turned towards the artery; and their convex furfaces, which mutually meet together, being placed towards the ventricle, only permit the blood to pafs one way, which is into the arteries. There are ufinally three of thefe valves belunging to the pulmonary artery, and as many to the aorta; and from their figure they are called valvula femilunares. The communication between the two great veins and the ventricles is by ineans of the two appendages or auricles into which the blood is difcharged; fo that the other valves which may be faid to belong to the veins, are placed in each ventricle, where the auricle opens into it. The valves in the right ventricle are ufually three in number, and are named valvula tricufpides; but in the left ventricle we commonly obferve only two, and thefe are the valuula mitrales. The membranes which form thefe valves in each cavity are attached fo as to project fomewhat forward; and both the tricufpides and the mitrales are connected with the tendinous flrings, which were defcribed as arifing from the flefly columma. By the contraction of either ventricle, the blood is driven into the artery which communicates with that ventricle; and thefe tendinous frings being gradually relaxed as the fides of the cavity are brought nearer to each other, the valves naturally clofe the opening into the auricle, and the blood neceffarily directs its conrfe into the then only open paffage, which is into the artery; but after this contraction, the heart becomes relaxed, the tendinous ftrings are again fretched out, and, drawing the valves of the auricle downwards, the blood is poured by the veins into the ventricle, from whence, by another contraction, it is a gain thrown into the artery, as will be defcribed hereafter. The right ventricle is not quite fo long, though fomewhat larger, than the left; but the latter has more fubftance than the other : and this feems to be, becaufe it is intended to tranfinit
the blood to the moft diftant parts of the body, whereas the right ventricle diftributes it only to the lungs.

The leart receives its nerves from the par vagum and the intercontals. The arteries which ferve for its nourifment are two in number, and arife from the aorta. They furround in fome meafure the bafis of the heart, and from this courfe are called the coronary arteries. From thefe arteries the blood is returned by veins of the fame name into the auricles, and even into the ventricles.

The mufcular bags called the auricles are fituated at the bafis of the heart, at the lides of cach other ; and, correfponding witl the two ventricles, are like thofe two cavities diftinguifhed into right and left. Thefe facs, which are interiorly unequal, have externally a jagged appendix; which, from its having been compared to the extremity of an ear, has given them their name of auricles.

SEct. XI. Angiology, or a Defcription of the Blood-velfels.

The heart has been defcribed as contracting itfelf, and throwing the blood from its two ventricles into the pulmonary artery and the aorta, and then as relaxing itfelf and receiving a frefh fupply from two large veins, which are the pulmonary vein and the vena cava. We will now point out the principal diftributions of thefe veffels.

The pulmonary artery arifes from the right ventricle by a large trunk, which foon divides into two confiderable branches, which pafs to the right and left lobes of the lungs: each of thefe branches is afterwards divided and fubdivided into an infinite namber of branches and ramifications, which extend through the whole fubstance of the lungs; and from the fe branches the blood is returned by the veins, which, contrary to the courfe of the arteries, begin by very minute canals, and gradually become larger, forming at length four large trunks called pulmonary veins, which terminate in the left auricle by one common opeing, from whence the blood paffes into the left ventricle. From this lame ventricle arifes the aorta or grcat artcry, which at its beginning is nearly an inch in diameter : it foon fends off two branches, the coronaries, which go to be diftributed to the heart and its auricles. After this, at or about the third or fourth vertebra of the back, it makes a confiderable curvature ; from this curvature (B) arife three arteries; one of which foon divides into two branches. The firft two are the left fubclavian and the left carotid, and the third is a common trunk to the right fubclavian and right carotid; though fometimes both the carotids arife diftinetly from the aorta.

The two carotids afcend within the fubclavians, along the fides of the trachea; and when they have reached the larynx, divide into two principal branches, the internal and external carotid. The firft of thefe runs a little
(A) Authors differ about the courfe and diftinctions of thefe fibres; and it feems right to obferve, that the fructure of the heart being more compact than that of other mufcles, its fibres are not eafily feparated.
(в) Anatomifts ufually call the npper part of this curvature aorta afcendens; and the othcr part of the artery to its divifion at the iliacs, aorta defcendens: but they differ about the place where this diftinction is to be introduced ; and it feems fufficiently to anfwer every purpofe, to fpeak only of the aorta and its curvature.

Of the little way backwards in a bending direction; and hav$\underbrace{\text { Thorax. ing reached the under part of the car, paffes through }}$ the canal into the os petrofum, and entering into the cavity of the cranium, is diftributed to the brain and the membranes which invelope it, and likewife to the cye. The external carotid divides into feveral branches, which are diftributed to the larynx, pharynx, and other parts of the neck; and to the jaivs, lips, totigue, cyes, temples, and all the external parts of the head.

Each fibclavian is likewife divided intoa great number of branches. It fends off the vertebral artery, which palfes through the openings we fee at the bottom of the tranfverfe proceffes of the vertebre of the neck, and in its conrle fends off many ramifications to the neighbouring parts. Some of its branches are diftributed to the finial marrow, and after a conliderable inflection it enters into the cranium, and is diftributed to the brain. The fubolavian likewife fends off branches to the mufcles of the neck and fcapula; and the mediaftinum, thym $1 s$, pericardium, diaphragm, the breats, and the mufcles of the thorax, and even of the abdomen, derive branches from the fubclavian, which are diftinguifhed by diferent names, alluding to the parts to which they are diftributed; as the mammary, the phrenic, the interco/fal, \&cc. But notwithftanding the great number of branches which have been defcribed as arifing from the fubclavian, it is ftill a confiderable artery when it reaches the axilla, where it drops its tormer name, which alludes to its paffage under the clavicle, and is called the axillary artery; from which a variety of branches are diftributed to the mufcles of the breaft, fcapula, and arm.-But its main trunk taking the namic of brachialis, runs along onlthe infide of tile arm near the os humeri, till it reaches the joint of the fore-arm, and then it divides into two branches. This divifion however is different in different fubjects; for in fome it takes place higher up and in others lower down. When it happens to divide above the joint, it may be confidered as a happy difpofition in cafe of an accident by bleeding; for fluppofing the artery to be unfortunatcly punctured by the lancet, and that the hromorrhage could only be ftopped by making a ligature on the veffel, one branch would remain unhurt, through which the blood would pafs uninterrupted to the fore-arm and hand. One of the two branches of the brachialis plunges down under the flexor mufcles, and runs along the edge of the ulna; while the other is carried along the onter furface of the radius, and is cafily felt at the wrift, where it is only covered by the common integuments. Both thefe branches commonly unite in the palm of the hand, and form an arterial arch from whence branches are detached to the fingers.

The aorta, after having given off at its curvature the carotids and fubzlavians which convey blood to all the upper parts of the body, defcends upon the bodics of the vertebre a little to the left, as far as the os facrum, where it drops the name of aorta, and divides into two confiderable branches. In this courfe, from its curvature to its bifurcation, it fends off feveral arteries ith the following order: r. One or two little arteries, firft demonftrated by Rayfch as goins to the bronchi, and called arterive bronchinales Ryy ${ }^{\text {chii. }}$. 2. The arterix œfophagex. Thefe are commonly thrce or four in num-
ber. They arife from the fore-part of the aorta, and are diftributed chiefly to the ©efophagus. 3. The inferior intercoftal arteries, which are diftributed between the ribs in the fame manner as the arteries of the thrce or four fuperior ribs are, which are derived from the fubclavian. Thefe arteries fend off branches to the medulla fpinalis. 4. The diaphragmatic or inferior phrenic arteries, which go to the diaphragm, ftomach, omentum, diodenum, pancreas, fpleen, liver, and gall-bladder. 5. The cœeliac, which fends off the coronary-fomachic, the fplenic, and the hepatic artery. 6. The fuperior mefenteric artery, which is diftributed to the mefentery and fmall inteftines. 7. The emulgents, which go to the kidneys. 8. The arteries, which arc diftributed to the glandulæ renales. 9. The fpermatic. 10. The inferior mefenteric artery, which ramifies through the lower portion of the mefentery and the large inteftines.-A branch of this artery which goes to the rectum is called the internal hamorrhoidal. In. The lumbar arteries, and a very finall branch called the facra, which are diftributed to the mufcles of the loins and abdomen,' and to the os facrum and medalla fpinalis.

The trunk of the aorta, when it has reached the laft vertebra lumborum, or the os facrum, drops the name of aorta, and feparates into two forked branches called the iliacs. Each of thefe foon divides into two branches; one of which is called the internal iliac, or hypogafic artery, and is diftributed upon the contents of the pelvis and upon the mufcles on its outer fide. One branch, called pudenda communnis, fends fmall ramifications to the end of the rectum under the name of homorrboidales externc, and is afterwards difributed upon the penis. The other branch, the external iliac, after having given off the circumflex artery of the os ilium and the epigaftric, which is diftributed to the recti-mufcles, paffes out of the abdomen under Poupart's ligament, and takes the name of crural artery. It defcends on the inner part of the thigh clofe to the os femoris, fending off branches to the mufcles, and then finking deeper in the hind part of the thigh, reaches the ham, where it takes the name of popliteal: after this it feparates into two confiderable branches; one of which is called the anterior tibial artery; the other divides into two branches, and thefe arteries all go to be diftributed to the leg and foot.

The blood, which is thus diftributed by the aorta to all parts of the body, is brought back by the veins, which are fuppofed to be continued from the ultimate branches of arteries; and uniting together as they approach the heart, at length form the large trunks, the vena cava afcendens, and vena cava defcendens.

All the veins which bring back the blood from the upper extremities, and from the head and breaft, pafs into the vena cava defcendens; and thofe whiclı return it from the lower parts of the body terminate in the vena cava afcendens; and thefe two cavas uniting together as they approach the heart, open by one common orifice into the left auricle.

It does not here feem to be neceffary to follow the different divifions of the veins as we did thofe of the arteries; and it will be fufficient to remark, that in general every artery is accompanied by its vein, and that both are diftinguifhed by the fame name. But, line

Of the Thorax.
like many other general rules, this too has its exceptions (c). The veins for inftance, which accompany the external and internal carotid, are not called the carotid veins, but the external and internal jugular.In the thorax, there is a vein dittinguifhed by a proper name, and this is the azygos, or vena fine pari. This vein, which is a pretty confiderable one, runs along by the right fide of the vertebre of the back, and is chiefly deftined to receive the blood from the intercoftals on that fide, and from the lower half of thofe on the left fide, and to convey it into the vena cava defcendens. In the abdomen we meet with a vein, which is fill a more remarkable one, and this is the vena porte, which performs the office both of an artery and a vein. It is formed by a re-union of all the veins which come from the fomach, inteftines, omentum, pancreas, and fpleen, fo as to compofe one great munk, which goes to ramify through the liver; and after having depofited the bile, its ramifications unite and bring back into the vena cava, not only the blood which the vena portæ had carried into the liver, but likewife the blood from the hepatic artery. Every artery has a vein which correfponds with it; but the trunks and branches of the veins are more numerous than thofe of the arteries.- The reafons for this difpofition are perlaps more difficult to be explained; the blood in its courfe through the veins is much farther removed from the fource and caufe of its motion, which are in the heart, than it was when in the arteries; fo that its courfe is confequently lefs rapid, and enough of it could not poffibly be brought back to the heart in the moment of its dilatation, to equal the quantity which is driven into the arteries from the two ventricles, at the time they contract; and the equilibrium which is fo effential to the continuance of life and health would confequently be deftroyed, if the capacity of the veins did not exceed that of the arteries, in the fame proportion that the rapidity of the blond's motion through the arteries exceeds that of its return through the veins.

A large artery ramifying through the body, and continued to the minute branches of veins, which gradually unite together to form a large trunk, may be compared to two trees united to each orher at their tops; or ratler as having their ramifications fo difpofed that the two tranks terminate in one common point; and if we farther fuppofe, that both thefe trunks and their branches are hollow, and that a fluid is inceflantly circulated through them, by entering into one of the trunks and returning through the other, we fhall be enabled to conceive how the blood is circulated through the veffels of the human body.

Every trunk of an artery, before it divides, is nearly cylindrical, or of equal diameter through its whole length, and fo are all its branches when examined feparately. But every trunk feems to contain lefs blood than the many branches do into which that trunk feparates; and each of thefe branches probably
contains lefs blood than the ramifications do into which of the it is fubdivided : and it is the fame with the veins; the volume of their feveral ramifications, when confidered together, being found to exceed that of the great trunk which they form by their union.

The return of the blood through the veins to the heart, is promoted by the action of the mufcles, and the pulfation of the arteries. And this returu is likewife greatly affifted by the valves whicln are to be met with in the veins, and which conftitute one of the great diftinctions between them and the arteries. Thefe valves, which are fuppofed to be formed by the inner coat of the veins, permit the blood to flow from the extremities towards the heart, but oppofe its return. They are moft frequent in the finaller veins. As the column of blood increafes, they feem to become lefs neceffary; and therefore in the vena cava afcendens, we meet with only one valve, which is near its origin.

The arteries are compofed of feveral tunics. Some writers enumerate five of thefe tunics; but perhaps we may more properly reckon only three, viz. the nervous, mufcular, and cuticular coats. The veins are by fome anatomifts defcribed as having the fame number of coats as the arteries; but as they do not feem to be irritable, we cannot with propriety fuppofe them to have a mufcular tunic. We are aware of Dr Verfchuir's* experiments to prove that the jugular and fome other veins poffefs a certain degree of irritability; but teriarum et it is certain, that his experimelats, repeated by others, Venarum vi have produced a different refult ; and even he himfelf irritabili, allows, that fometimes he was unable to difinguifl 4 to. any fuch property in the veins. Both thefe feries of veffels are nourifhed by fill more minute arteries and veins, which are feen creeping over their coats, and ramifying through their whole fubftance, and are called vafa vaforum; they have likewife many minute branches of nerves.

The arteries are nuch fronger than the veins, and they feem to require this furce to be enabled to refift the impetus with which the blood circulates through them, and to impel it on towards the veins.

When the heart contracts, it impels the blood into the arteries, and fenfibly diftends them; and thefe veffels again contract, as the heart becomes relaxed to receive more blood from the auricles; fo that the caufe of the contraction and dilatation of the arteries feems to be eafy to be underftood, being owing in part to their own contractile power, and in part to the action of the heart ; but in the veins, the effeets of this impulfe not being fo fenfibly felt, and the veffels themfelves having little or no contractile power, the bloodfecms to flow in a conttant and equal fream: and this, together with its pafing grodually from a fmall channel into a larger one, feems to be the reafon why the veins have no pulfatory motion, excupt the large ones near the heart; and in theie it fremis o te occafioned by the motion of the diaphragm, and by the regurgitation of the blood in the cavas.

Sect.
(c) In the extremities, fome of the deep-feated veins, and all the fuperficial ones, take a courfe different: from that of the arteries.

Of the Secr. XII. Of the Action of the Heart, Auricles,
Thorax. 124. The heart, at the time it contracts, drives the blood from its ventricles into the arteries; and the arteries being thus filled and diftended, are naturally inclined to contract the moment the heart begins to dilate, and ceafes to fupply them with blood. Thefe alternate motions of contraction and dilatation of the heart and arteries, are diftinguifhed by the names of fyfole and diaflole. When the heart is in a fate of contraction or fyftole, the arteries are at that inftant diftended with blood, and in their diaftole ; and it is in this ftate we feel their pulfatory motion, which we call the pulfe. When the heart dilates, and the arteries contract, the blood is impelled onwards into the veins, through which it is returned back to the heart. While the heart, however, is in its fyftole, the blood cannot pafs from the veins into the ventricles, but is detained in the auricles, which are two refervoirs formed for this ufe, till the diaftole, or dilatation of the heart, takes place; and then the diftended auricles contract, and drive the blood into the ventricles: fo that the auricles have an alternate fyftole and diaftole as well as the heart.

Although both the ventricles of the heart contract at the fame time, yet the blood paffes from one to the other. In the fame moment, for inflance, that the left ventricle drives the blood into the aorta, the right ventricle impels it into the pulmonary artery, which is diftributed through all the fubftance of the lungs. The blond is afterwards brought back into the left ventricle by the pulmonary vein, at the fame time that the blood is returned by the cavas, into the right ventricle, from all the other parts of the body.

This feems to be the mode of action of the heart and its veffels: but the caufe of this action has, like all other intricate and interefting fubjects, been diffcrently explained. It feems to depend on the ftimulus made on the different parts of the heart by the blood itfclf, which by its quantity and heat, or other properties (D), is perhaps capable of firft exciting that motion, which is afterwards continued through life, independent of the will, by a regular return of blood to the auricles, in a quantity proportioned to that which is thrown into the arteries.

The lieart poffeffes the vis infita, or principle of irritability, in a much greater degree than any other mufcle of the body. The pulfe is quicker in young than in old fubjects, becaufe the former are cat. par. more irritable than the latter. Upon the fame principle we may explain, why the pulfe is conftantly quicker in weak than in robuft perfons.

Sect. XIII. Of the Circulation.
After what has been obferved of the ftructure and action of the heart and its auricles, and likewife of the
arteries and veins, there feem to be but very few arguments required to demonftrate the circulation of the blood, which has long fince been eftablifhed as a medical truth. This circulation may be defined to be a perpetual motion of the blood, in confequence of the astion of the heart and arteries, which impel it through all the parts of the body, from whence it is brought back by the veins of the heart.

A very fatisfactory proof of this circulation, and a proof eafy to be underftood, may be deduced from the different effects of preffure on an artery and a vein. If a ligature, for inftance, is paffed round an artery, the veffel fwells confiderably between the ligature and the heart; whereas if we tie up a vein, it only becomes filled between the extremity and the ligature, and this is what we every day obferve in bleeding. The ligature we pafs round the arm on thefe occafions, comprefles the fuperficial veins; and the return of the blood throngh them being impeded, they become diftended. When the ligature is too loofe, the veins are not fufficiently compreffed, and the blood continues its progrefs towards the heart ; and, on the contrary, when it is made too tight, the arteries themfelves become compreffed; and the flow of the blood through them being impeded, the veins cannot be diftended.

Another phænomenon, which effectually proves the circulation, is the lofs of blood that every living animal fuftains by opening ouly a fingle artery of a moderate fize ; for it continues to flow from the wounded veffel till the equilibrium is deftroyed which is effential to life. This trath was not unknown to the ancients; and it feems ftrange that it did not lead them to a knowledgc of the circulation, as it fufficiently proves, that all the other veffels muft communicate with that which is opened. Galen, who lived more than $\mathbf{r} 500$ years ago, drew this conclufion from it; and if we farther obferve, that he defcribes (after Erafiftratus, who flourifled about 450 years before him) the feveral valves of the heart, and determines their difpofition anid ufes, it will appear wonderful, that a period of near 2000 years thould afterwards elapfe before the true courfe of the blood was afcertained. This difcovery, for which we are indebted to the immortal Harvey, has thrown new lights on phyfiology and the doctrine of difeafes, and conticules one of the moft important periods of anatomical hiftory.

Sect. XIV. Of the Nature of the Blood.

BLOOD, recently drawn from a vein into a bafon; would feem to be au homogeneons fluid of a red colour (E) ; but when fuffered to reft, it foon coagulates, and divides into two parts, which are diftinguiihed by the names of craffamentum and ferum. The craffamentum is the red coagulum, and the ferum is the water in which it floats. Each of thefe may be again feparated into two others; for the craffamentum, by being 5 C
repeatedly

Of the Thorax.

* Herufon's Experim. Eng. PartI.

527.

The variety of functions which we have defcribed as being inceffantly performed by the living body, and the continual circulation of the blood through it, muft neceffarily occafion a conftant diffipation of the feveral parts which enter into its compofition. In fpeaking of the infenfible perficiation, we obferved how much was inceffantly paling off from the lungs and the furface of the fkin. The difcharge by urine is likewife every day confiderable; and great part of the bile, faliva, \&c. are excluded by ftool. But the folid, as well as the fluid parts of the body, require a conftant renewal of nutritious particles. They are expofed to the attrition of the fluids which are circulated through them; and the contraction and relaxation they repeat fo many thoufand times in every day, would neceffarily occafion a diffolution of the machine, if the renewal was not proportioned to the wafte.

It is eafy to conceive how the chyle formed from the aliment is affimilated into the nature of blood, and repairs the lofs of the fluid parts of our body; but how the folids are renewed, has never yet been fatisfaitorily explained. The nutritious parts of the blood are probably depofited by the arterics by exfudation through their pores into the tela cellulofa; and as the folid parts of the body are in the embryo only a kind of jelly, which gradually acquires the degree of confiftence they are found to have when the body arrives
at a more advanced age; and thefe fame parts which confift of bones, cartilages, ligaments, mufcles, \&c. are fometimes reduced again by difeafe to a gelatinous flate ; we may, will fome degrec of probability, confider the coagulable lymph as the fource of nutrition.

If the fupply of nourillment exceeds the degrec of wafte, the body increafes; and this happens in infancy and in youth : for at thofe periods, but more particularly the former one, the fluids bear a large proportion to the folids; and the fibres being foft and yielding, are proportionably more capable of extenfion and increafe. But when the fupply of nutrition only equals the wafte, we neither increafe or decreafe; and we find this to be the cafe when the body has attained its full growth or acmè: for the folids having then acquired a certain degree of firmnefs and rigidity, do not permit a farther increafe of the body. But as we approach to old age, rigidity begins to be in excefs, and the fluids (н) bear a much lefs proportion to the folids than before. The difipation of the body is greater than the fupply of nourifhment; many of the fmaller veffels become gradually impervious (1); and the fibres lofing their moifture and their elaficity, appear flaccid and wrinkled. The lilies and the rofes difappear, becaufe the fluids by which they were produced can no longer reach the extremities of the capillary vefiels of the fkin. As thefe clanges take place, the nervous power being proportionably weakened, the irritability and fenfibility of the body, which were formerly fo remarkable, are greatly diminifhed; and in advanced life, the hearing, the eye-fight, and all the other fenfes, become gradually impaired.

Sect. XVI. Of the Glands and Secretions.

The glands are commonly nnderftood to be fmall, roundiff, or oval bodies formed by the convolution of a great number of veffels, and deftined to feparate particular humours from the mafs of blood.
They are ufually divided into two claffes; but it feems more proper to diftinguifh three kinds of glands, viz. the mucous, conglobate, and conglomerate.
The mucous glands, or follicles, as they are moft conmonly called, are finall cylindrical tubes continued
(F) It may not be improper to obferve, that till of late the coagulable lymph has been confounded with the ferum of the blood, which contains a fubftance that is likewife coagulable, though only when expofed to heat, or combined with certain chemical fubftances; whereas the other coagulates fpontaneoufly when expofed to the air or to reft.
(c) When the blood feparates into ferum and craffamentum, if the latter be covered with a cruft of a whitifh or buff colour, it has been ufually confidered as a certain proof of the blood's being in a ftate of too great vifcidity. This appearance commonly taking place in inflammatory difeafes, has long ferved to confirm the theory which afcribes the caufe of inflammation to lentor and obftructions. But from the late Mr Hewfon's experiments it appears, that when the action of the arteries is increafed, the blood, inftead of being more vifcid, is, on the contrary, more fluid than in the ordinary flate, previous to inflammation : and that in confequence of this, the coagulable lymph fuffers the red globules, which are the heavieft part of ihe blood, to fall down to the bottom before it coagulates: fo that the craffamentum is divided into two parts; one of which is found to confift of the coagulable lymph alone (in this cafe termed the buff); and the other, partly of this and partly of the red globules.
(H) As the fluids become lefs in proportion to the folids, their acrimony is found to increafe; and this may perhaps compenfate for the want of fluidity in the blood, by diminifhing its cohefion.
(r) In infancy, the arteries are numerous and large in refpest to the veins, and the lymphatic glands are larger than at any other time of life; whereas, in old age, the capacity of the venons fyftem exceeds that of the arteries, and the lymphatic fyftem almoft difappears.

Of the from the ends of arteries. In fome parts of the body, Thorax. as in the tonfils, for example, fevcral of thefe follicles
may be feen folded together in one common covering, and opening into one common finus. Thefe follicles are the vellels that fecrete and pour out mucns in the mouth, œfopliagus, Itomach, inteftines, and other parts of the body.

The conglobate glands are peculiar to the lymplatic fyftem. Every lymphatic vein paffes through a gland of this kind in its way to the thoracic duct. They are met with in different parts of the body, particularly in the axilla, groin, and mefentery, and are either folitary or in diftinct clufters.

The conglomerate glands arc of much greater bulk than the conglobate, and feem to be an alfemblage of many fmaller glands. Of this kind are the liver, kidneys, \&c. Some of them, as the pancreas, parotids, \&c. have a granulated appcarance. All thefe conglomerate glands are plentifully fupplied with bloodveffels; but their nerves are in general very minute, and few in number. Each little granulated portion furnifles a finali tube, which unites with other fimilar duets, to form the common excretory duct of the gland.

The principal glands, and the humours they fecrete, have been already defcribed in different parts of this work ; and there only remains for us to examine the general ftrusture of the glands, and to explain the mechanifm of fecretion. On the firf of thefe fubjects two different fyftems have been formed; each of which has had, and fill continues to have, its adherents. One of thefe fyftems was advanced by Malpighi, who fuppofed that an artery entering into a gland ramifies very minutely through its whole fubsance; and that its branches ultimately terminate in a veficular cavity or follicle, from whence the fecreted fluid paffes out through the excretory duct. This doctrine at firft met with few opponents; but the celebrated Ruyfch, who firft attempted minute injections with wax, afterwards difputed the exiftence of thefe follicles, and afferted, that every gland appears to be a continued feries of veffels, which after bcing repeatedly convoluted in their courfe through its fubftance, at length terminate in the excretory duct. Anatomifts are ftill divided between thefe two fyftems: that of Malpighi, however, feems to be the beft founded.

The mode of fecretion has been explained in a variety of ways, and they are all perfectly hypothetical. In fuch an inquiry it is natural to ank, how one gland conftantly feparates a particular hamour, whilc another gland fecretes one of a very different nature from the Blood? The bile, for inftance, is feparated by the liver, and the urine by the kidneys. Are thefe fecretions to be imputed to any particular difpofitions in the fluids, or is their caufe to be looked for in the folids?

It las been fuppofed, that every gland contains within itfelf a fermenting principle, by which it is enabled to change the nature of the blood it receives, and to enduc it with a particular property. So that, according to this fyftem, the blood, as it circulates through the kidneys, becomes mixed with the fermenting principle of thofe glands, and a part of it is converted into uriae; and again, in the liver, in the faLival and other glands, the bile, the faliva, and other
juices, are generated from a fimilar canfe. But it feems to be impoffible for any liquor to be confined in a place expofed to the circulation, without being carried a way by the torrent of blood, every part of which wonld be equally affected; and this fyftem of fermentation has long been rejected as vague and chimerical. But as the caufe of fecretion continued to be looked for in the fluids, the former fyftem was fucceeded by another, in which recourfe was had to the analogy of the humours. It was obferved, that if paper is moiftened with water, and oil and water are afterwards poured upon it, that the water only will be permitted to pafs through it; but that, on the other hand, if the paper has been previoufly foaked in oil inftead of water, the oil only, and not the water, will be filtered through it. Thefe obfervations led to a fuppofition, that every fecretory organ is originally furnifhed with a humour analogous to that which it is afterwards deftined to feparate from the blood; and that in confequence of this difpofition, the fecretory veffels of the liver, for inftance, will only admit the bilons particles of the blood, while all the other humours will be excluded. This fyftem is an ingenious one, but the difficulties with which it abounds are unanfwerable; for oil and water are immifcible; whereas the blood, as it is circulated through the body, appears to be an homogeneous fluid. Every oil will pals through a paper moiftened only with one kind of oil; and wine, or fpirits mixed with water, will eafily be filtered through a paper previoufly foaked in water. Upon the fame principle, all our humours, though differing in their other properties, yet agreeing in that of being perfectly mifcible with each other, will all eafily pafs through the fame filtre. - But thefe are not all the objections to this fyftem. The humours which are fuppofed to he placed in the fecretory veffels for the determination of fimilar particles of the blood, muft be originally feparated without any analogous fluid; and that which happens ouce, may as eafily happen always. Again, it fometimes happens from a vicions difpofition, that humours are filtered through glands which are naturally not intended to afford them a paffage ; and when this once has happened, it ought, according to this fyftem, to be expected always to do fo: whereas this is not the cafe ; and we are, after all, naturally led to feek for the caufe of fecretiuns in the folids. It does not feem right to afcribe it to any particular figure of the fecretory weffels; becaufe the foft texture of thefe parts does not permit them to preferve any conftant fhape, and our fluids feem to be capable of accommodating themfelves to every kind of figure. Some have imputed it to the difference of diameter in the orifices of the different fecretory veffels. To this doetrine objections have likewife been raifed; and it has been argued, that the veffels of the liver, for inftance, would, upon this principle, afford a paffage not only to the bile, but to all the other humours of lefs confiftence with it. In reply to this objection, it has been fuppofed, that fccondary veffels exift, which originate from the firf, and permit all the humoms thinner than the bilc to pafs through them.

Each of thefe hypothefes is probably very renote from the truth.

This plate reprefents the Heart in fitu, all the large Arteries and Veins, with fome of the Mufcles, \&c.

Muscies, \&c.-Superior Extremity.- a , Maffeter. b, Complexus. C, Digaftricus. d, Os hyoides. c, Thyroid gland. f, Levator fcapulæ. g, Cucullaris. h h, The clavicles cut. i, The deltoid mufcle. k, Biceps flexor cubiti cut. J, Caraco-brachialis. m , Triceps extenfor cubiti. n , The heads of the pronator teres, flexor carpi radiales, and flexor digitorum fublimis, cut. o, The fiexor carpi ulnaris, cut at its extremity. p, Flexor digitorum profundus. q, Supinator radii longus, cnt at its extremity. r, Ligamentum carpi tranfverfale. s, Extenfores carpi radiales. t, Latiffimus dorfi. u, Anterior edge of the ferratus anticus major. v v, The inferior part of the diaphragm. w w, Its anterior elge cur. $\mathrm{x} x$, The kidneys. y, Tranfverfus abdominis. z, Os ilium.
Inferior Extremity.- a, Pfoas magnus. b, Iliacus internus. c, The flehy origin of the tenfor vagina femoris. $d d$, The offa pubis cut from each other. e_{e}, Mufculus pectineus cut from its origin. f, Short head of the triceps abductor femoris cut. g, The great head of the triceps. h, The long head cut. i, Vaftus internus. k, Vaftus externus. 1, Crureus. n, Gemellus. n, Soleus. o, Tibia. p, Peronæus longus. q, Peronæus brevis. r, Fibula.

Heart and Blood-vessels.-A, The heart, with the coronary arteries and veins. B, The right auricle of the heart. C, The zorta afcendens. D, The left fubclavian artery. E, The left carotid artery. F, The common trunk which fends off the right fubclavian and
right carotid arteries. G, The carotis externa. H, Arteria facialis, which fends off the coronary arteries of the lips. I, Arteria temporalis profunda. K, Aorta defcendens. LL, The iliac arteries,-which fend of M M, The femoral or crural arteries. N.B. The other arteries in this figure have the fame diftribution as the veins of the fame name :-And generally, in the anatomical plates, the defcription to be found on the one fide, points out the fame parts in the other. I, The frontal vein. 2, The facial vein. 3, Vena temporalis profunda. 4, Vena occipitalis. 5, Vena jugularis externa. 6, Vena jugularis interna, covering the arteria carotis communis. 7, The vafcular arch on the palm of the hand, which is formed by, 8 , The radial artery and vein, and, 9, The ulnar artery and vein. io ro, Cephalic vein. Ir, Bafilic vein, that on the right fide cut. 12, Median vein. 13, The humeral vein, which, with the median, covers the humeral artery. 1414 , The external thoracic or mammary arteries and veins. 15, The axillary vein, covering the artery. I6 16, The fubclavian vcins, which, with (66) the jugulars, form, 17 , The vena cava fuperior. I8, The cutaneous arch of veins on the fore part of the foot. 19, The vena tibialis antica, covering the artery. 20, The vena profunda femoris, covering the artery. 21, The upper part of the vena fapheria major. 22, The femoral vein. 2323 , The iliac veins. 2424 , Vena cava inferior. 2525 , The renal veins covering the arteries. 2626 , The diaphragmatic veins.

Part V. Of the BRAIN and NERVES.

SECT. I. Of the Brain and its Integuments.

THE bones of the cranium were defcribed in the ofteological part of this work, as inclofing the brain, and defending it from external injury : but they are not its only protection ; for when we make an horizontal fection through thefe bones, we find this mafs everywhere furrounded by two membranes (x), the dura and pia mater. - The firft of thefe lines the interior furface of the cranium, to which it everywhere adheres ftrong- ly (I), but more particularly at the futures, and at the many foramina through which veffels pafs between it
and the pericranium. The dura mater (M) is perfectly fmooth and inclaftic, and its inner furface is conftantly bedewed with a fine pellincid fluid, which everywhere feparates it from the pia mater. The dura mater fends off feveral confiderable proceffes, which divide the brain into feparate portions, and prevent them from compreffing each other. Of thefe proceffes there is one fuperior and longitudinal, called the falx, or falciform procefs, from its refemblance to a fcythe. It arifes from the fine of the os frontis, near the chrifta galli, and extending along in the direction of the fagittal future, to beyond the lambdoidal future, divides the brain into two hemif-
(к) The Greeks called thefe membranes neeninges; but the Arabians, fuppofing them to be the fource of all the other membranes of the body, afterwards gave them the names of dura and pia mater; by which they are now waflly diflinguifhed.
(1.) In young fubjects this adhefion is greater than in adults; but even then, in the healthy fubject, it is no where eafily feparable, without breaking through fome of the minute veffels by means of which it is attached to the bone.
(M) This membrane is commonly defcribed as confifting of two laminæ ; of which the external one is fuppofed to perform the office of periofteum internum to the cranium, while the internal one forms the folds and proceffes of the dura mater. In the natural fate, however, no fuch feparation is apparent; like other membranes, we may indced divide it, not into two only, but many laminx; but this divifion is artificial, and depends on the dexterity of the anatomift.

「latr
1111

Of the hemifpheres. A little below the lambdoidal future, it Brain and divides into two broad wings or expanfions called the
Nerves. Nerves. tranfuerfe or lateral procelfes, which prevents the lobes
of the cerebrum from prefling on the cerebellum. Befides thefe there is a fourth, which is fituated under the tranfverfe proceffes, and being continued to the fpine of the occiput, divides the cerebellum into two lobes.

The blood, after being diftributed through the cavity of the cranium by means of the arteries, is retnrned, as in the other parts of the body, by veins which all pafs on to certain channels, fituated behind thefe feveral proceffes.

Thefe canals or finufes communicate with each other, and empty themfelves into the internal jugular veins, which convey the blood into the vena cava. They are in fast triangular veins, running through the fubftance of the dura mater, and, like the proceffes, are diftinguifhed into longitudinal and lateral; and where thefe three meet, and where the fourth procefs palfes off, we obferve a fourth finus, which is called torcular ; Herophilus, who firft defcribed it, having fuppofed that the blood at the union of thefe two veins, is, as it were, in a prefs.

Befides thefe four canals, which were known to the ancients, modern anatomifts enumerate many others, by giving the appellation of finufes to other veins of the dura mater, which for the moft part empty themfelves into fome of thofe we have juft now defcribed. There are the inferior longitudinal finus, the fuperior and inferior petrous finufes, the cavernous finufes, the circular finus, and the anterior and poiterior occipital finufes.

Thefe finufes or veins, by being conveycd through a thick denfe membrane, firmly fufpended, as the dura mater is, within the cranium, are lefs liable to rupture; at the fame time they are well fupported, and by running every where along the inner furface of the bones, they are prevented from preffing on the fubtance of the brain. To prevent too great a dilatation of them, we find filaments (called chordee W illifiii, from their having been firft noticed by Willis) fretched acrofs their cavities; and the oblique manner in which the veins from the brain run throngh the fubfance of the brain into thefe channels, ferves the purpofe of a valve, which prevents the blood from turning back into the fmaller and weaker veffels of the brain.

The pia mater is a much fofter and finer membrane than the dura mater; being exceedingly delicate, tranfparent, and vafcular. It invefts every part of the brain, and ferids off an infinite number of elongations, which infinuate themfelves between the convolutions, and even into the fubftance of the brain. This membrane is compofed of two laminæ; of which the exterior one is named tunica arachroidea, from its thinnefs, which is equal to that of a fider's web. Thefe two laminæ are intimately adherent to each other at the upper part of the brain, but are eafily feparable at the bafis of the brain, and through the whole length of the medulla fpinalis. The external layer, or tunica arachnoidca, appears to be fpread uniformly over the furface of the brain, but without entering into its furrows as the inner layer does; the latter being found to infinuate itfelf between the convolutions, and even into the interior cavities of the brain. The blood-veffels of the
brain are diftributed throngh it in their way to that organ, and are therefore divided into very minute ranifications, before they penetrate the fubftance of the brain.

There are feveral parts included under the general The denomination of brain. One of thefe, which is of the fofteft confiftence, and fills the greateft part of the cavity of the cranium, is the cerebrum, or brain properly fo called. Another portion, which is feated in the inferior and pofterior part of the head, is the cerebellum; and a third, which derives its origin from both thefe, is the medulla oblongata.

The cercbrum is a medullary mafs of a moderate con- Cerebrum fiftence, filling up exactly all the npper part of the cavity of the cranium, and divided into two hemifpheres by the falx of the dura mater. Each of thefe hemifpheres is ufually diftinguifhed into an interior, a middle, and a pofterior lobe. The firlt of thefe is lodged on the orbital procelfes of the os frontis ; the middle lobes lie on the middle foffre of the bafis of the cranium, and the pofterior lobes are placed on the tranfverfe feptum of the os occipitis, immediately over the cerebellum, fron which they are feparated by the lateral procefles of the dura mater. Thefe two portions afford no diftinguifhing mark of feparation; and on this account Haller, and many other modern anatomifts, omit the diftinction of middle lobe, and fipeak only of the anterior and pofterior lobes of the brain.

The cerebrum appears to be compofed of two diftinet fubftances. Of thefe, the exterior one, which is of a greyifh or afh-colour, is called the cortex, and is fome cuhat fofter than the other, which is very white, and is called medulla or fubffantia alba.

After having removed the falx, and feparated the two hemifpheres from each other, we perceive a white convex body, the corpus callofum, which is a portion of the medullary fubftance, uniting the two hemifpheres to each other, and not invefted by the cortex. By making an horizontal incifion in the brain, on a level with this corpus callofum, we difcover two oblong cavities, named the anterior or lateral ventricles, one in each hemifphere. Thefe two ventricles, which communicate with each other by a hole immediately under the plexus choroides, are feparated laterally by a very fine medullary partition, called feptum lucidum, from its thinnefs and tranfparency. The lover edge of this feptum is fixed to the fornix, which is a kind of medullary arch (as its name implies) fituated under the corpus callofum, and nearly of a triangular fhape. Anteriorly the fornix fends off two medullary chords, called its anterior crura; which feem to be united to each other by a portion of medullary fubftance, named commil /Jura anterior cerebri. Thefe crura diverging from one another, are lof at the outer fide of the lover and fore-part of the third ventricle. Pofteriorly the fornix is formed into two other crura, which unite with two medullary protuberances called pedes hippocamipi, and fometimes cormua ammonis, that extend along the backpart of the lateral ventricles. The concave edge of the pedes hippocampi is covered by a medullary lamina, called corpas finbriatum.

Neither the edges of the fornix, nor its pofterier crura, can be well difinguifhed, till we have removed the plexus choroides. This is a production of the pia mater, which is fpread over the lateral ventricles. Its
loofe.
loofe edges are collected, fo as to appear like a vafcuar band on each dide.
When we lave removed this plexus, we difcover feveral other protuberances included in the lateral ventricles. Thefe are the corpora friata, the thalami nervorurn opticorum, the tubercula quadrumgemina, and the pineal gland.

The corpora flriata are two curved oblong eminences, that extend along the anterior part of the lateral ventricles. They derive their name from their itriated appearance, which is owing to an intermixture of the cortical and medullary fubltances of the brain. The thalami nervorum opticorum, are fo called, becaufe the optic nerves arife chiefly from them, and they are likewife compofed both of the cortex and medulla. They are feparated from the corpora friata only by a kind of medullary chord, the geminum centrum femi-circulare. The thalami are nearly of an oval thape, and are fituated at the bottom of the upper cavity of the lateral ventricles. They are clofely united, and at their convex part feem to become one body.

Anteriorly, in the fpace between the thalami, we obferve an orifice by which the lateral ventricles communicate, and another leads down from this, under the different appellations of for amen commune anterius, vulva iter ad infundibulum, but more properly iter ad tortium ventricutum; and the fcparation of the thalami from each other pofteriorly, forms another opening or interftice called anus. This has been fuppofed to communicate with the third ventricle; but it does not, the bottom of it being fhut up by the pia mater. The back part of the anus is formed by a kind of medullary band, which connects the thalami to each other, and is called commilfura poflerior cerebri.

Belind the thalami and commiffura poiterior, we obferve a fmall, foft, greyif, and oval body, about the fize of a per. This is the glandula pinealis; it is defcribed by Galen under the name of conarion, and has been rendered fanous by Defcartes, who fuppofed it to be the feat of the foul. Galen fcems formerly to have entertained the fane opinion. Some modern writers lave, with as little reafon, imagined that the foul is placed in the corpus callofum.

The pincal gland refts upon four remarkable eminences, difpofed in pairs, and feated immediatcly below it. Thefc tubercles, which by the ancients were called teftes and nates, have, fince the time of Winflow, been more commonly named tubercula quadrugenina.

Under the thalami we obferve another cavity, the third ventricle, which terminates anteriorly in a fmall medullary canal, the infundibulum, that leads to the glandula pituitaria. It has bcen doubted, whether the infundibulum is really hollow; but fome late experiments on this part of the brain * by Profeffor Murray of Upfal, clearly prove it to be a medullary canal, furrounded by both laminæ of the pia mater. After freezing the brain, this chamel was found filled with ice; and de Haen tells \dagger us, he found it dilated, and filled with a calcarcous matter (N).

The foft fpongy body in which the infundibulum
terminates, was by the ancients fuppofed to be of a glandular ftructure, and deftined to filter the ferofity of the brain. Spigelius pretended to have difcovered its

Of the Brain and
Nerves. excretory duct, but it fecms certain that no fuch duct exifts. It is of an oblong fhape, compofed, as it were, of two lobes. In ruminant animals it is much larger than in man.

From the pofterior part of the third ventricle, we fee a finall groove or channel, defcending obliquely backwards. This channel, which is called the aquedutf of Sylrius, though it was known to the ancients, opens into a nother cavity of the brain, placed between the cercbellum and medulla oblongata, and called the fourth ventricle.

133

The cerebellum, which is divided into two lobes, is Cerebellur, commonly fuppofed to be of a firmer texture than the cerebrum ; but the truth is, that in the greater number of fubjects, there appears to be no fenfible difference in the confiftence of thefe two parts. It has more of the cortical than of the medullary fubftance in its compofition.
The furrow that divides the two lobes of the cerebellum leads anteriorly to a procefs, compofed of medullary and cortical fubftances, covered by the pia mater; and which, from its being divided into numerous furrows, refembling the rings of the earth-worm, is named proceffus vermiformis. This procefs forms a kind of ring in its conrfe between the lobes.
The furface of the cerebellum does not afford thofe circunvolntions which appear in the cerebrum; but inftead of thefe, we obferve a great namber of minute furrows, running parallel to eacli other, and nearly in a tranfverfe direction. The pia mater infinuates ilfelf into thefe furrows.
When we cut into the fubftance of the cerebellum, from above downwards, we find the medullary part ranning in a kind of ramifying courfe, and exhibiting an appearance that has gotten the name of arbor vita. Thefe ramifications unite to form a medullary trumk ; the middle, anterior, and moft confiderable part of which forms two proceffcs, the crura cerebelli, which unite with the crira cerebri, to form the medulla oblongata. The laft furnifhes two other proceffes, which lofe themfelves under the nates, and thus unite the lobes of the cerebellum to the pofterior part of the cerebrum. Under the nates we obferve a tranfverfe medullary line, or linea alba, running from one of thefe proceffes to the other; and between them we find a very thin medullary lamina, covered with the pia mater, which the generality of anatomifts have (though feemingly without reafon) confidered as a valve formed for clofing the communication between the fourth ventricle and the aquæductus Sylvii. Vieuffens named it valvula major cerebri.

The medillla oblongata is fituated in the middle, Medulla lower, and pofterior part of the cranium, and may be oblongata. confidered as a production or continuation of the whole medullary finbftance of the cerebrum and cerebellum, being formed hy the union of two confiderable medullary proceflies of the cerebrum, called crura cerebri,
(N) The under part of it, however, appears to be impervious; at leaft no injection that can be depended on has been made to pafs from it into the glandula pituitaria without laceration of parts.

Of the $b_{r i}$, with two other fmaller ones from the cerebeilum, Brain and which were jult now fpoken of under the name of cruNerves. ra cerebelli.

The crura cercbri arife from the middle and lower part of each hemifphere. They are feparated from each other at their origin, but are united below, where they terminate in a middle protuberance, the pons $V a-$ rolii, fo called, becaufe Varolius compared it to a bridge. This name, however, can convey no idea of its real appearance. It is, in fact, nothing more than a medullary protuberance, nearly of a femi-fpherical flape, which unites the crura cerebri to thofe of the cerebellum.

Between the crura cerebri, and near the anterior edge of the pons Varolii, are two tubercles, corapofed externally of medullary, and internally of cineritious, fubftance, to which Euftachius firf gave the name of eminentice mamillares.

Along the middle of the pofterior furface of the medulla oblongata, where it forms the anterior part of the fouth ventricle, we obferve a kind of furrow which runs downwards and terminates in a point. About an inef above the lower extremity of this fiffure, feveral medullary filaments are to be feen running towards it on each fide in an oblique direction, fo as to give it the appearance of a writing-pen; hence it is called calamus fcriptorius.

From the pofterior part of the pons Varolii, the medulla oblongata defcends obliquely backwards; at its fore-part, immediately behind the pons Varolii, we obferve two pair of eminences, which were defcribed by Euftachius, but reccivcd no particular appellation till the time of Vieuffens, who gave them the names of corpora olivaria and corpora pyramidalia. The former are the outermoft, being placed one on each fide. They are nearly of an oval fhape, and are compofed of medulla, wath ftreaks of cortical fubftance. Between theie are the corpora pyramidalia, each of which terminates in a point. In the luman fubj ot thefe four eminences are fometimes not eafily aia inguifhed
The medulla Spinalis, or Spizal marrow. Which is the name given to the mednliary chord that is extended down the vertebral canal, from the great foramen of the occipital bone to the bottom of the laft lumbar vertebra, is a continuation of the medulla oblongata. Like the other parts of the brain, it is invefted by the dura and pia mater. The firft of thefe, in its paffage out of the cranium, adheres to the foramen of the os occipitis. Its commection with the ligamentary fubftance that lines the cavity of the fine, is only by means of cellular membraine; but between the feveral vertebre, where the nerves pafs out of the fpine, it fends off prolongations, which adhere ftrongly to the vertebral liganents. Hcre, as in the cranium, the dara inater has its finufes or large veins. Thefe are
two in number, and are feen running on each fide of the medullary column, from the foramen magnum of the os occipitis to the lower part of the os facrum. They cominunicate together by ramifying branches at each vertebra, and terminate in the vertebral, intercoftal, and facral veins.
The pia mater is connected with the dura mater by means of a thin tranfparent fubftance, which from its indentations between the fpinal nerves has obtained the name of ligamentum denticulatum. It is fomewhat firmer than the tunica arochnoidea, but in other refpects refembles that membrane. Its ufe is to fupport the fpinal marrow, that it may not affect the medulla oblongata by its weight.

The fpinal marrow itfelf is externally of a white colour; but upon cutting into it we find its middle-part compofed of a darker coloured mafs, refembling the cortex of the brain. When the marrow has reached the firft lumbar vertebra, it becomes extremely narrow, and at length terminates in an oblong protuberance; from the extremity of which the pia mater fends off a prolongation or ligament, refembling a nerve, that perforates the dura mater, and is fixed to the os coiccygis.

The medulla fpinalis gives rife to 30 or 31 pair of nerves, but they are not all of the fame fize, nor do they all run in the fame dircetion. The upper ones are thinner than the reft, and are placed almoft tranfverfely: as we defcend we find them running more and more obliquely downwards, till at length their courfe is almoft perpendicular, fo that the lowermoft nerves exhibit an appearance that is called cauda equi$n a$, from its refemblance to a horfe's tail.

The arteries that ramify through the different parts of the brain, are derived from the internal carotid and from the vertebral arteries. The inedulla fpinalis is fupplied by the anterior and pofterior fpinal arteries, and likewife receives branches, from the cervical, the inferior and fuperior intercoftal, the lumbar, and the facral arteries.

Sect. II. Of the Nerves.
The nerves are medullary chords, differing from each other in fize, colour, and confiftence, and deriving their origin from the medulla oblongata and medulla fpinalis. There are 39, and fometimes 40, pair of thele nerves; nine (o) of which originate from the medulla oblongata, and 30 or 31 from the medulla fpinalis. They appear to be perfectly inelaftic, and likevife to poffefs no irritability. If we irritate mufcular fibres, they immediately contract ; but nothing of this fort happens if we irritate a nerve. They carry with them a covering from the pia mater; but derive no tunic from the dura mater, as hath been generally, though erroneoufly, fuppofed, ever fince the time of Galen (P),
(o) It has becn ufial to defcribe the ten pair of nerves as ariing from the medulla oblongata; but as the tenth pair arife in the fame manner as the other fpinal nerves, Santorini, Heifter, Haller, and others, feem very properly to liave claffed them among the nerves of the fine.
(p) Baron Haller and Profeffior Zimn feem to have bren the firft who demonfrated, that the dura nater is reficcted upon and adheres to the perioftcum at the cdges of the foramina that afford a paflage to the nerves oit of the cranium, and vertebral canal, or is foon loft in the cellular fubftaice.
the outer covering of the nerves being in fact nothing more than the cellular membrane. This covering is very thick where the nerve is expofed to the action of mufcles; but where it runs through a bony canal, or is fecure from preffure, the cellular tunic is extremely thin, or altogether wanting. We have inftances of this in the portio mollis of the anditory nerve, and in the nerves of the heart.

By elevating, carefully and gently, the brain from the bafis of the cranium, we find the firft nine pair arifing in the following order: I. The nervi olfactorii, diftributed through the pituitary membrane, which conftitutes the organ of fimell. 2. The optici, which go to the eyes, where they receive the impreffions of vifible objects. 3. The oculorum motores, fo called becaufe they are diftributed to the mufcles of the eye. 4. The pathetici, diftributed to the fuperior oblique mufcles of the eyes, the motion of which is expreffive of certain paffions of the foul. 5. The nerves of this pair foon divide into three principal branches, and each of thefe has a different name. Its upper divifion is the ophthalamicus, which is diftributed to various parts of the eyes, eye-lids, forehead, nofe, and integuments of the face. The fecond is called the maxillaris fuperior, and the third maxillaris inferior; both which names allude to their diftribution. 6. The abductores; each of thefe nerves is diftributed to the abductor mufcle of the eye, fo called, becaufe it helps to draw the globe of the eye from the nofe. 7. The anditorii (e), which are diftributed through the organs of hearing. 8. The par vagum, which derives its name from the great number of parts to which it gives branches both in the thorax and abdomen. 9. The linguales, or hy-po-gloffi, which are diftributed to the tongue, and appear to contribute both to the organ of tafte and to the motions of the tongue (R).

It has already been obferved, that the fpinal marrow fends off 30 or 3 I pair of nerves; thefe are chiefly diftributed to the exterior parts of the trunk and to the extremities. They are commonly diftinguifhed into the cervical, dorfal, humbar, and facral nerves. The cervical, which pafs out from between the feveral vertebræ of the neck, are eight (s) in number; the dorfal, twelve; the lumbar, five; and the facral, five or
fix; the number of the latter depending on the number of holes in the os facrum. Each fpinal nerve at its origin is compofed of two fafciculi of medullary fibres. One of thefe fafciculi arifes from the anterior, and the other from the pofterior, furface of the medulla. Thefe fafciculi are feparated by the ligamentum dentictilatum ; after which we find them contiguous to one another. They then perforate the dura mater, and unite to form a confiderable knot or ganglion. Each of thefe ganglions fends off two branches; one anterior, and the other pofterior. The anterior branches communicate with each other at their coming out of the fpine, and likewife fend off one, and fometimes more branches, to affift in the formation of the intercontal nerve.

The knots or ganglions of the nerves juft now fpoken of, are not only to be met with at their exit from the fine, but likewife in varions parts of the body. They occur in the nerves of the medulla oblongata, as well as in thofe of the fpine. They are not the effects of difeafe, but are to be met with in the fame parts of the fame nerves, both in the fotus and adult. The are commonly of an oblong fhape, and of a greyif colonr, fomewhat inclined to red, which is perhaps owing to their being extremely vafcular. Internally we are able to diftinguifh fomething like an intermixture of the nervous filaments.

Some writers have confidered them as fo many little brains; Lancifi fancied he had difcovered mufcnlar fibres in them, but they are certainly not of an irritable nature. A late writer, Dr Johnfone , imagines they are intended to deprive us of the power of the will over certain parts, as the heart, for inftance: but if the Ganglithis hypothefis were well founded, we Thould meet with ons of the them only in the norves leading to involuntary muf- Nerves. cles; whereas it is certain, that the voluntary mufcles receive their nerves through ganglions. Doctor Mion. ro, from obferving the accurate intermixture of the minute nerves which compofe them, confiders them as new fources of nervous energy \dagger.

The nerves, like the blood-veffels, in their courfe \dagger Obfervathrough the body, communicate with each other; and Nervous each of thefe communjcations conftitutes what is call- $S_{y f}$ fem. ed a plexus, from whence branclies are again dctached to different parts of the body. Some of thefe are con-
(e) This pair, foon after its entrance into the meatus auditorius internus, feparates into two branches. One of thefe is of a very foft and pulpy confiftence, it is called the portio molis or the feventh pair, and is fread over the inner part of the ear. The other paffes out through the aqueduct of Fallopius in a firm chord, which is diftinguifhed as the portio dura, and is diftributed to the external ear and other parts of the neck and face.
(R) Heifter has fummed up the ufes of thefe nine pair of nerves in the two following Latin verfes:
"Olfaciens, cernens, oculofque movens, patienfque,
"Gaftans, abducens, audienfque, vaganfque, loquenfque."
(s) Befides thefe, there is another pair called accefforii, which arifes from the medulla fpinalis at its beginning; and afcending through the great foramen of the os occipitis into the cranium, paffes out again clofe to the eighth pair, with which, however, it does not unite; and it is afterwards diftributed criefly to the mufcles of the neck, back, and fcapula. In this courfe it fends off filaments to different parts, and likewife communicates with feveral other nerves. Phyfiologifts are at a lofs hove to account for the fingular origin and courfe of thefe nervi accefforii. The ancients confidered them as branches of the eighth pair, diftributed to mufcles of the fcapula: Willis likewife confidered them as appendages to that pair, and on that account named them accefforii. They are fometimes called the \int pinal pair; but as this latter name is applicable to all the nerves of the fpine indifcriminately, it feems better to adopt that given by Willis.

Of the ftant and confiderable enongh to be diftinguifhed by Brain and Nerves. particular names, as the Semi.unar plexus; the pulmonary plexus; the hepatic, the cardiac, \&c.

It would be foreign to the purpofe of this work, to follow the nerves through all their diftributions; but it may be remembered, that in defcribing the different vifcera, mention was made of the nerves diftributed to them. There is one pair, howcver, called the intercoffal, or great fympathetic nerve, whicl fecms to require particular notice, becaufe it has an almoft univerfal connection and correfpondence with all the other ncrves of the body. Anthors are not perfectly agreed about the origin of the intercoftal ; but it may pcrhaps not improperly be defcribed, as beginning from filaments of the fifth and fixth pair ; it then paffes out of the cranium, through the bony canal of the carotid, from whence it defcends laterally clofe to the bodies of the vertebre, and receives branches from almoft all the vertebral nerves; forming almoft as many ganglions in its courfe through the thorax and abdomen. It fends off an infinite number of branches to the vifcera in thofe cavities, and forms feveral plexufcs with the branches of the eighth pair or par vagum.

That the nerves are deftined to convey the principles of motion and fenfibility to the brain from all parts of the fyftem, there can be no doubt ; but how thefe effeets are produced, no one has ever yet been able to determine. The inquiry has been a conftant fource of lyypothefis in all ages, and has produced fome ingenious ideas, and many erroneous pofitions, but without having hitherto afforded much fatisfactory information.

Some phyfiologifts have confidered a trunk of nerves as a folid chord, capable of being divided into an infinite number of filaments, by means of which the impreffions of feeling are conveyed to the fenforium communc. Others have fuppofed it to be a canal, which afterwards feparates into more minute clannels; or, perhaps, as being an affemblage of many very fimall and diftinct tubes, connected to each other, and thus forming a cylindrical chord. They who contend for their being folid bodies, are of opinion, that feeling is occafioned by vibration; fo that, for inflance, according to this fyftem, by pricking the finger, a vibration would be occafioned in the nerve, diftributed through its fubftance ; and the effects of this vibration, when extended to the fenforium, would be an excital of pain. But the inelafticity, the foftnefs, the connection, and the fituation of the nerves, are fo many proofs that vibration lias no fhare in the caufe of feeling.

Others have fuppofed, that in the brain and fpinal marrow, a very fubtile fluid is fecreted, and from thence conveyed through the imperceptible tubes, which they confider as exitting in the nerves. They have farther fuppofed, that this very fubtile fluid, to which they have given the name of animal Spirits, is fecreted in the cortical fubftance of the brain and fpinal marrow, from whence it paffes through the medullary fubtance. This, like the other fyftem, is founded altogether on hypothefis; but it feems to be an hypothefis derived from much more probable principles, and there are many ingenious arguments to be brought in its fupport.

EXPLANATION

Fig. i. Reprefents the Inferior part of the Brain; -the Anterior part of the whole Spine, including the Medulla Spinalis; -with the origin and large portions of all the Nerves.
A A, The anterior lobes of the cerebrum. B B, The lateral lobes of the cerebrum. C C, The two lobes of the cerebellum. D, Tuber annulare. E, The paffage from the third ventricle to the infundibulum. \mathbf{F}, The meduna oblongata, which fends off the medulla fpinalis through the fpine. G G, That part of the os occipitis which is placed above (H H) the tranverfe proceffes of the firft cervical vertebra. II, scc. The feven cervical vertebre, with their intermediate cartilages. K K, \&c. The twelve dorfal vertebræ, with their intermediate cartilages. L L, \&c. The five lumbar vertebre, with their intermcdiate cartilages. M, The os facrum. N, The os coccygis.
Nerves.-- I 1 , The firft pair of nerves, named olfactory, which go to the nofe. 22, The fecond pair, named optic, which goes to form the tunica retina of the cye. 3 3, The third pair, named motor oculi ; it fupplies moft of the mufcles of the cye-ball. 44, The fourth pair, named pathetic,-which is wholly fpent upoin the mufculus trochlearis of the eye. 55 , The fifth pair divides into three branches.-The firft, named ophthatmic, goes to the orbit, fupplies the lachrymal gland, and fends branches out to the forehead and nofe.-The fecond, named fiperior maxillary, fupplies
the tecth of the upper jaw, and fome of the mufcles of the lips.-The third named inferior maxillary, is fpent upon the mufcles and teeth of the lower jaw, tongue, and mufcles of the lips. 66 , The fixth pair, which, after fending off the beginning of the intercoftal or great fympatietic, is feent upon the abductor oculi. 77, The feventh pair, named auditory, divides into two branches.-The largeft, named portio mollis, is fpent upon the internal ear.- The fimalleft, portio dura, joins to the fifth pair within the internal ear by a reflected branch from the fecond of the fifth ; and within the tympanum, by a branch from the third of the fifth, named chorda tympani.-Vid. fig. 3. ncar B. 8 8, \&c. The eighth pair, named par vagum,-which accompanies the intercoftal, and is fent upon the tongue, larynx, pharynx, lungs, and abdominal vifcera. 99, The ninth pair, which are fent upon the tongue. 10 IO , \&c. The intercoftal, or great fympathetic, which is feen from the fixth pair to the bottom of the pelvis on each fide of the fpine, and joining with all the nerves of the fpine;-in its progrefs fupplying the heart, and, with the par vagum, the contents of the abdoraen and pelvis. II If, The accefforius, which is fpent upon the fernocleido-maftoidæus and trapezins mufcles. 12 12, The firt cervical nerves ;-1313, The fecond cervical nerves;-both fpent upon the mufcles that lie on the neck, and teguments of the neck aud head. 14 14, The third cervical nerves, which, after fending off ($1515, \& c c$.) the phrenic nerves to the diapiragm,

Of the.

 Brain and Nerves. :of the fupply the mufcles and tegoments that lie on the fide 3rain and Nerves. of the neek and top of the thoulder. I6 16, The brachial plexus, formed by the fourth, fifth, fixth, fe-
venth cervicals, and firt dorfal nerves.-which fupply the mufcles and teguments of the fuperior extremity. I7 I7, The twelve dorfal, or proper intercoftal nerves, which are fpent upon the intercoftal mufcles and fome of the large mufcles which lie upon the thorax. 18 I 8 , The five lumbar pairs of nerves, which fupply the lumbar and abdominal mufcles, and fome of the teguments and mufcles of the inferior extremity. 19 19, The facro-fciatic, or pofterior crural nerve, formed by the two inferior lumbar, and three fuperior of the os facrum. This large nerve fupplies the greateft part of the mufcles and teguments of the inferior extremity. 20, The fomachic plexus, formed by the eighth pair. 2I 21 , Branches of the folar or cællac plexns, formed by the eighth pair and intercortals, which fupply the fomach and chylopoietic vifcera. 22 22, Branches of the fuperior and inferior mefenteric plexufes, formed by the eighth pair and interco-
ftals, which fupply the chylopoictic vifecra, with part of the of the organs of urine and generation. 2323 , Ncrves Brain and which accompany the fpermatic cord. 2424 , The hy- Nerves. pogaftric plexus, which fupplies the organs of urine and gencration within the pelvis.

FIG. 2, 3, 4, 5. Shows different Views of the Inferior part of the Brain, cut perpendicularly through the Middle,-with the Origin and large Portions of all the Nerves which pals out through the Bones of the Craniun, -and the three firt Cervicals.
A, The anterior lobe. B, The lateral lobe of the cerebrum. C, One of the lobes of the cerebellum. D, Tuber annulare. E, Corpus pyramidale, in the middle of the medulla oblongata. F, The corpas olivare, in the fide of the medulla oblongata. G, The medrlla oblongata. H , The medulla finalis.

Nerves.- $=345678$ and 9 , Pairs of nerves. 10 10, Nervus accefforius, which comes from-II, 12, and 13, The threc firt cervical nerves.

Part VI. Of the SENSES, and their ORGANS.

INN treating of the fenfes, we mean to confine ourfelves to the external ones of touch, tafte, finelling, hearing, and vifion. The word fente, when applied to thefe five, feems to imply not only the fenfation excited in the mind by certain impreffions made on the body, but likewife the organ deltined to receive and tranfmit thefe imprefions to the fenforimm. Each of thefe organs being of a peculiar ftrmeture, is fufceptible only of particular impreffions, which will be pointed out as we proceed to defcribe each of them feparately.

Sect. I. Of Touch.

The fenfe of touch may be defined to be the faculty of diftinguifhing certain properties of bodies by the feel. In a general acceptation, this definition might pcrhaps not improperly be extended to every part of the body poffeffed of fenfibility (τ), but it is cominonly confined to the nervous papillæ of the cutis, or true fkin, which, with its appendages, and their fevcral ufes, have been already defcribed.

The exterior properties of bodies, fuch as their fo-
lidity, moifture, incquality, fmoothnefs, drynefs, or fluidity, and likewife their degree of leat, feem all to be capable of making different impreffions on the papillæ, and confequently of exciting different ideas in the fenforium commune. But the organ of touch, like all the other fenfes, is not equally delicate in every part of the body, or in every fubject; being in fome much more exquifite than it is in others.

Sect. II. Of the Taffe.

The fenfe of tafte is feated chiefly in the tongue ; the fituation and figure of which are fufficiently known.

On the upper furface of this organ we may obferve a great number of papillæ, which, on account of their difference in fize and fhape, are commonly divided into three claffes. The largeft are fituated towards the bafis of the tongne. Their number commonly varies from feven to nine, and they feem to be mucous follicles. Thofe of the fecond clafs are fomewhat fmaller, and of a cylindrical fhape. They are moft numcrous about the middle of the tongue. Thofe of the third clafs are very minute, and of a conical hape. They
(T) In the courfe of this article, mention has often been made of the fenfibility or infenfibility of different parts of the body: it will therefore, perhaps, not be amifs to oblerve in this place, that many parts which were formerly fuppofed to poffefs the mof exquifite fenfe, are now known to have but lirtle or no feeling, at leaft in a found ftate; for in an inflamed ftate, even the bones, the moft infenfible parts of any, become fufceptible of the moft painful fenfations. This carious difcovery is due to the late Baron Haller. His experiments prove, that the bones, cartilages, ligaments, tendons, epidernis, and membrancs (as the pleura, pericardium, dura and pia mater, periofteum, \&c.), may in a healtly fate be confidered as infenfible. As fentibility depends on the brain and nerves, of courfe different parts will poffefs a greater or lefs degree of feeling, in proportion as they are fupplied with a greater or fmaller number of nerves. Upon this principle it is, that the fkin, mufcles, fomach, inteftines, urinary bladder, ureters, utcrus, vagina, penis, tongue, and retina, are extremely fenfible, while the langs and glands have only an obfeure degree of fceling.

Part VI.

Of the Seufes.
are very numerous on the apex and edges of the tongue, and have heen fuppofed to be formed by the extremities of its nerves.

We obfcrve a line, the linea linguce mediana, running along the middle of the tongue, and dividing it as it were into two portions. Towards the batis of the tongue, we meet with a little cavity, named by Morgagni foramen cacum, which feems to be nothing more than a common termination of fome of the excretory duets of mucous glands fituated within the fubfance of the tongue.

We have already obferved, that this organ is every where covered by the cuticle, which, by forming a reduplication, called the framum, at its under part, ferves to prevent the too great motion of the tongue, and to fix it in its fituation. But, befides this attachment, the tongue is connected by means of its mufcles and membranous ligaments, to the lower jaw, the os hyoides, and the ftyloid procelfes.

The principal arteries of the tongue are the linguales, which arife from the external carotid. Its veins empty themfelves into the external jugulars. Its nerves arife from the fifth, eighth, and ninth, pair.

The variety of taftes feems to be occafioned by the different impreffions made on the papilla by the food. The different fate of the papillæ with refpect to their moifture, their figure, or their covering, feems to produce a confiderable difference in the tafte, not only in different people, but in the fame fubject, in ficknefs and in health. The great ufe of the tafte feems to be to enable us to diftinguifh wholefome and falutary food from that which is unhealthy; and we obferve that many quadrupeds, by having their papillæ (U) very large and long, have the faculty of diftinguifhing flavours with infinite accuracy.

Sect. III. Of Smelling.

The fenfe of fmelling, like the fenfe of tafte, feems intended to direct us to a proper choice of aliment, and is chiefly feated in the nofe, which is diftinguifhed into its external and internal parts. The fituation and figure of the former of thefe do not feem to require a definition. It is compofed of bones and cartilages, covered by mufcular fibres and by the common integuments. The bones make up the upper portion, and the cartilages the lower one. The feptum narium, like the nofe, is likewife in part bony, and in part cartilaginous. Thefe bones and their connections were deforibed in the ofteology.

The internal part of the nofe, befides the offa fpongiofa, has fix cavities or finufes, the maxillary, the frontal, and the fphenoid, which were all defcribed with the bones of the liead. They all open into the noftrils; and the nofe likewife communicates with the mouth, larynx, and pharynx, pofteriorly behind the velum palati.

Atl thefe feveral parts, which are included in the internal divifion of the nofe, viz. the inncr furface of the noftrils, the lamellæ of the offa fpongiofa, and the fina-
fes, are lincd by a thick and rery vafcular membrane, which, thongh not unknown to the ancients, was firft well defcribed by Schneider*, and is thercfore now commonly named menbrana pituitaria Schneideri. This tarrbe Ca . membrane is truly the oran of fmeling; but its real iii. fructure does not yet feem to be perfectly underfood. It appears to be a continuation of the cuticle, which lines the inncr furface of the month. In fome parts of the nofe it is finooth and firm, and in others it is loofe and foongy. It is conftantly moiftened by a mucous fecretion; the finer parts of which are carried off by the air we breathe, and the remainder, by being retained in the finufes, acquires confiderable confiftence. The manner in which this mucus is fecreted has not yet been fatisfactorily afcertained; but it feems to be by means of mucous follicles.

Its arteries are branches of the internal maxillary and internal carotid. Its veins empty themfelves into the internal jugulars. The firft pair of nerves, the olfactory, are fpread over every part of it, and it likewife receives branches from the fifth pair.

After what has been faid of the pituitary membrane, it will not be difficult to conceive how the air we draw in at the noftrils, being impregnated with the cffluvia of bodies, excites in us that kind of fenfation we call fmalling. As thefe effluvia, from their being exceedingly light and volatile, cannot be capable in a fmall quantity of making any great impreffion on the extremities of the olfactory nerves, it was neceffary to give confiderable extent to the pituitary membrane, that by this means a greater number of odoriferous particles might be admitted at the fame time. When we wifh to take in much of the effluvia of any thing, we naturally clofe the mouth, that all the air we infpire may pafs through the nofrils; and at the fame time, by means of the mufcles of the nofe, the noftrils are dilated, and a greater quantity of air is drawn into them.

In many quadrupeds, the fenfe of finelling is much more extenfive and delicate than it is in the human fubject; and in the human fubject it feems to be more perfect the lefs it is vitiated by a varicty of fmells. It is not always in the fame ftate of perfection, being naturally affected by every change of the pituitary nembrane, and of the lymph with which that membrane is moiftened.

Sect. IV. Of Hearing.

Before we undertake to explain the manner in which we are enabled to receive the impreffions of found, it will be neceffary to defcribe the ear, which is the organ of hearing. It is commonly diftinguifhed into external and internal. The former of thele divifions includes all that we are able to difcover without diffection, and the meatus auditorius, as far as the tympanum; and the latter, all the other parts of the ear.

The external ear is a cartilaginous funnel, covered by the common integuments, and attached, by means of its ligaments and mufcles, to the temporal bone. Altliough capable only of a very obfcure motion, it is 5 D 2
found
(v) Malpighi's defcription of the papillx, which has been copied by many anatomical writers, feems to have heen taken chicfly from the tongues of fhcep.
found to liave feveral mufcles. Different parts of it are diftinguifled by fevcral names; all its cartilaginous 'part is called ala or wing, to diftinguifh it from the foft and pendent part below, called the lobe. Its outer circle or border is called belix, and the femicircle within this, antibelix. The moveable cartilage placed immediatcly before the meatus auditorius, which it may be made to clofe exactly, is named tragus; and an eminence oppofite to this at the extremity of the antihelix, is callcd antitragus. The concha is a confiderable cavity formed by the extremities of the helix and antihelix. The meatus auditorius, which at its opening is cartilaginons, is lined with a very thin membranc, which is a continuation of the cuticle from the furface of the ear.

In this canal we find a yellow wax, which is fecreted by a number of minute glands or folliclcs, each of which has an excretory duct. This fecretion, which is at firft of an oily confiftence, defends the membrane of the tympanum from the injuries of the air ; and by its bitternefs, prevents minute infects from entering into the ear. But when from neglect or difeafe it accumulatcs in too great a quantity, it fometimes occafions deafnefs. The inner extremity of the meatus is clofed by a very thin tranfparent membrane, the membrana tympani, which is fet in a bony circle like the head of a drum. In the laft century Rivinus, profeffor at Lcipfic, fancied he had difcovered a hole in this menmbrane, furrounded by a fphincter, and affording a paffage to the air, betwcen the external and internal ear. Cowper, Heifter, and fome other anatomifts, have admitted this fuppofed foramen, which certainly does not exift. Whenever there is any opening in the membrana tympani, it may be confictered as accidental. Under the membrana tympani runs a branch of the fifth pair of nerves, called chorda tympani; and beyond this membrane is the cavity of the tympanum, which is about feven or eight lines wide, and half fo many in depth; it is femifpherical, and every where lined by a very fine membrane. There are four openings to be obferved in this cavity. It communicates with the mouth by mcans of the Euftachian tube. This canal, which is in part bony and in part cartilaginous, begins by a very narrow opening at the anterior and almof fuperior part of the tympanum, increafing in fize as it advances towards the palate of the mouth, where it terminates by an oval opening. This tube is every where lined by the fame membrane that covers the infide of the mouth. The real ufe of this canal does not feem to have been hithcrto fatisfactorily afcertained; but found would feem to be conveyed through it to the membrana tympani, deaf perfons being often obferved to liften attentively with their mouths open. Oppofite to this is a minutc paffage, which leads to the finuofities of the maftoid procefs; and the two other openings, which are in the intcrinal procefs of the os petrofium, are the feneftra ovalis, and fencftra rotunda, both of which are covercd by a very finc inembrane.

There are three diftinet bones in the cavity of the tympanum; and thefe are the malleus, incus, and ftapes.

Befides thefe therc is a fourth, which is the os orbiculare, confidered by fome anatomifts as a procefs of the ftapes, which is neceffarily broken off by the violence we are obliged to ufe in getting at thefe boncs; but when accurately confidered, it feems to be a diftinct bone.
The malleus is fuppofed to refemble a hammer, being larger at one extremity, which is its head, than it is at the other, which is its handle. The latter is attached to the membrana tympani, and the head of the bone is articulated with the incus.

The incus, as it is called from its flape, thongh it feems to have lefs refemblance to an anvil than to one of the dentes molares with its roots widely feparated from each other, is diftinguifhed into its body and its legs. One of its legs is placed at the entry of the canal which leads to the maftoid procefs; and the other, which is fomewhat longer, is articulated with the ftapes, or rather with the os orbiculare, which is placed between them.

The third bone is very properly named flapes, being perfectly fhaped like a ftirrup. Its bafis is fixed into the feneftra ovalis, and its upper part is articulated with the os orbiculare. What is called the feneflira rotunda, though perhaps improperly, as it is more oval than round, is obfcrved a little above the other, in an eminence formed by the os petrofum, and is clofed by a continuation of the membrane that lines the inner furface of the tympanum. The ftapes and malleus are each of them furnifhed with a little mufcle, the ftapedeus and tenfor tympani. The firt of thefe, which is the fmalleft in the body, arifes frotn a little cavern in the pofterior and upper part of the cavity of the tympanum; and its tendon, after paffing through a hole in the fame cavern, is inferted at the back part of the head of the ftapes. This mufcle, by drawing the ftapcs obliquely upwards, affifts in ftretching the membrana tympani.
The tenfor tympani (x), or internus mallei, as it is called by fome writers, arifes from the cartilaginous extremity of the Euftachian tube, and is inferted into the back part of the handle of the malleus, which it ferves to pull inwards, and of courfe helps to ftretch the membrana tympani.

The labyrinth is the only part of the ear which remains to be defcribed. It is fituated in the os petrofum, and is feparated from the tympanum by a partition which is every where bony, except at the two feneftre. It is compofed of three parts; and thefe are the veftibulum, the femicircular canals, and the cochlea.

The vefibulum is an irregular cavity, much fmaller than the tympanum, fituated nearly in the centre of the os petrofum, lictween the tympanum, the cochlea, and the femicircular canals. It is open on the fide of the tympanum by means of the fcneftra ovalis, and communicates with the upper portion of the cochlea by an oblong foramen, which is under the feneftra ovalis, from which it is feparated only by a very thin partition.

Each of the three femicircular canals forms about half

Part VI.

 Of the half a circle of nearly a line in diameter, and runningSenfes.
each in a different direction, they are diftinguilhed into Senfes. vertical, oblique, and horizontal. Thefe three canals open by both their extremitics into the veftibulum; but the vertical and the oblique being united together at one of their extremities, there are only five orifices to be feen in the veftibulum.
The cochlea is a canal which takes a fpiral courfe, not unlike the fhell of a fnail. From its bafis to its apex it makes two turns and a half; and is divided into two canals by a very thin lamina or feptum, which is in part bony and in part membranous, in fuch a manner that thefe two canals only communicate with each other at the point. One of them opens into the veftibulum, and the other is covered by the membrane that clofes the feneftra rotunda. The bony lamella which feparates the two canals is exceedingly thin, and fills about two thirds of the diameter of the canal. The reft of the feptum is compofed of a moft delicate membrane, which lines the whole inner furface of the cochlea, and feems to form this divifion in the fame manner as the two membranous bags of the pleura, by being applied to each other, form the mediaftinum.

Every part of the labyrinth is furnifhed with a very delicate periofteum, and filled with a watery fluid, fecreted as in other cavities. This fluid tranfmits to the nerves the vibrations it receives from the membrane clofing the feneftra rotunda, and from the bafis of the ftapes, where it refts on the fenefrum ovale. When this fluid is collected in too great a quantity, or is compreffed by the ftapes, it is fuppofed to efcape through two minute canals or aqueducts, latcly defcri* De aqua- bed by Dr Cotunni *, an ingenious phyfician at duaib/s $A u$ - Naples. One of thefe aqueducts opens into the botris Humane toin of the veftibulum, and the other into the cochlea, $8 \mathrm{vo}, 1760$. near the feneftra rotunda. They both pafs through the os petrofum, and communicate with the cavity of the cranium where the fluid that paffes through them is abforbed; and they are lined by a membrane which is fuppofed to be a production of the dura mater.

The arteries of the external ear come from the temporal and other branches of the external carotid, and its veins pafs into the jugular. The internal ear rcceives branches of arteries from the bafilary and carotids, and its veins empty themfelves into the finufes of the dura mater, and into the internal jugular.

The portio mollis of the feventh parr is diftributed through the cochlea, the veftibulum, and the femicircular canals; and the portio dura fellds off a branch to the tympanum, and other branches to the external ear and parts near it.
The fenfe of hearing, in producing which all the parts we have defcribed affift, is occafioned ly a certain modulation of the air collected by the funnel-like fhape of the external ear, and conveyed throngh the meatus auditorius to the membrana tympani. That found is propagated by means of the air, is very eafily proved by ringing a bell under the receiver of ant air-pump; the found it affords being found to diminifh
gradually as the air becomes exhautted, till at lenglh it ceafes to be heard at all. Sound moves through the air with infinite velocity; but the degrec of its motion feems to depend on the ftate of the air, as it conftantly moves fafter in a denfe and dry, than it docs in a moift and rarefied air. See Acouflics, no 20.

That the air vibrating on the membrana tympani communicates its vibration to the different parts of the labyrinth, and by means of the fluid contained in this cavity affects the auditory nerve fo as to produce found, feems to be very probable; but the fituation, the minutenefs, and the variety of the parts which compofe the ear, do not permit much to be advanced with certainty concerning their mode of action.

Some of thefe parts feem to conftitute the immediate organ of hearing, and thefe are all the parts of the veftibulum : but there are others which feem intended for the perfection of this fenfe, without being abfolutely ellential to it. It has happened, for inftance, that the membrana tympani, and the little bones of the ear, have been deftroyed by difeafe, withont depriving the patient of the fenfe of hearing (y).

Sound is more or lefs lond in proportion to the ftrength of the vibration; and the variety of founds feems to depend on the difference of this vibration; for the more quick and frequent it is, the more acute will be the found, and vice ver f a.

Before we conclude this article, it will be right to explain certain phenomena, which will be found to have a relation to the organ of hearing.

Every body has, in confequence of particular founds, occafionally felt that difagreeable fenfation which is ufually called fotting the teeth on edge: and the caufe of this fenfation may be traced to the communication which the portio dura of the anditory nerve has with the branches of the fifth pair that are diftributed to the teeth, being probably occafioned by the violent tremor produced in the membrana tympani by thefe very acute founds. Upon the fame principle we may explain the ftrong idea of found which a perfon las who holds a vibrating ftring between his teeth.

The humming which is fonetimes perceived in the ear, without any exterior canfe, may be occafioned eithcr by an increafed action of the arteries in the ears, or by convulfive contractions of the mufcles of the malleus and ftapes, affecting the auditory nerve in fuch a manner as to produce the idea of fonnd. An ingenious philofophical writer * has lately difcovered, Pbildoppbithat there are founds liable to be excited in the ear by cal Obferva irritation, and without any affitance from the vibrati- tions on the tions of the air.
Sect. V. of Vifiont.

The eyes, which conftitute the organ of vifion, are fituated in two bony cavities named orbits, where they are furrounded by feveral parts, which are either intended to protect them from external injury, or to affift in their motion.

The
(y) This obfervation has led to a fuppofition, that a perforation of this membrane may in fome cafes of deafne's be ufeful; and Mr Chefelden relates, that, fome years ago, a malefactor was pardoned on condition that he hould fubmit to this operation ; but the public clanour raifed againft it was fo great, that it was thought right not to perform it.

The givise of tine eje is immentately covcred by tro cye-lids or palpebre, which are compofed of mulicular fibes coverad by the common integuments, and lined by a very fine and finooch meinbrane, which is from thence extended over part of the globe of the eye, and is called tunica conjunciva. Each cye-lid is cartilaginous at its edge ; and this horder which is called tarfits, is furnilhed with a row of hairs named cilia or eye-laflues.

The cilia ferve to protect the cye from infeets and minute bodies floating in the air, and likewife to moderate the action of the reys of light in their paffage to the retina. At the roots of thefe hairs there are febaceous follicles, firtt noriced by Meibomius, which difcharge a glutinous liniment. Sometimes the fluid they fecrete has too much vifcidity, and the eye-lids become glued to each other.

The upper border of the orbit is covered by the eje-brows or fupercilia, which by means of their two mufcles are capable of being brought towards each other, or of being carried upwards. They have been conflidered as ferving to protect the eyes, but they are probably intended more for ornament than utility (z).

The orbits, in which the eyes are placed, are furnifhed with a good deal of fat, which affords a foft bed on which the eye performs its feveral motions. The inner angle of each orbit, or that part of it which is near the nofe, is called cauthus major, or the great angle; and the outer angle, which is on the oppofite fide of the eye, is the canthus minor, or little angle.

The little reddifh body which we obferve in the great angle of the eye-lids, and which is cailed caruncula lachrymalis, is fuppofed to be of a glandular ftructure, and, like the follicles of the eye-lids, to fecrete an oily hamour. But its ftructure and ufe do not fcem to have been hitherto accurately determined. The furface of the eye is contantly moiftencd by a very fine limpid fluid called the tears, which is chiefly, and perhaps wholly, derived from a large gland of the conglomerate kind, fituated in a fmall depreffion of the os frontis near the outer angle of the eye. Its excretory ducts pierce the tunica conjunctiva juft above the cartilaginous borders of the upper eye-lids. When the tears were fuppofed to be focreted by the caruncule, this gland was called glandula innominata; but now that its fructure and ufes are afcertained, it very properly has the name of glandula laclerymalis. The tears poured out by the ducts of this gland are, in a natural and healthy ftate, incelfantly fpread over the furface of the eye, to keep it clear and tranfparent, by means of the eye-Iids, and as conftantly pafs out at the oppofite corner of the eye or inner angle, through two minute orifices, the puncta lachrymalia (A) ; being determined into thefe little openings by a reduplication of the tunica conjunctiva, fhaped like a crefcent, the two points
of which anfwer to the puncta. This reduplication is named monbrana, or valvula femilnuaris. Each of thede puncta is the beginniug of a fmall excretory tube, throngh which the tears pafs into a little pouch or refervoir, the facculus lachrymalis, which lies in an excavation formed partly by the nafal procefs of the os maxillare fuperius, and partly by the os unguis. The lower part of this fac forms a duct called the ductus ad nares, which is continued through a bony channel, and opens into the nofe, through which the tears are occafionally difcharged (E).
The motions of the eye are performed by fix mufcles; four of which are ftraight and two oblique. The fraight mufcles are diftingnified by the names of elevator, depreffor, adductor, and abductor, from their feveral ufes in elevating and depreffing the eye, drawing it towards the nofe, or carrying it from the nofe towards the temple. All thefe four mufcles arife from the bottom of the orbit, and are inferted by flat tendons into the globe of the eye. The oblique mufcles are intended for the more compound motions of the eye. The firft of thefe mufcles, the obliquus fuperior, does not, like the other four mufcles we have deferibed, arife from the botton of the orbit, but from the edge of the foramen that tranfmits the optic nerve, which feparates the origin of this mufcle from that of the others. From this beginning it paffes in a ftraight line towards a very fmall cartilaginous ring, the fituation of which is marked in the fkeleton by a little hollow in the internal orbitar procefs of the os frontis. The tendon of the mufcle, afier paffing through this ring, is inferted into the upper part of the globe of the eye, which it ferves to draw forwards, at the fane time turning the pupil downwards.

The obliquus inferior arifes from the edge of the orbit, under the opening of the ductus lachrymalis; and is inferted fomewhat pofteriorly into the outer 1ide of the globe, ferving to draw the eye forwards and turn the pupil upwards. When either of thefe two mufcles acts feparately, the cye is moved on its axis; but when they act together, it is compreffed both above and below. The eye itfclf, which is now to be defcribed, with its tunics, humours, and component parts, is nearly of a fpherical figure. Of its tunics, the conjunctiva bas been already deferibed as a partial covering, reflected from the inner furface of the eye-lids over the anterior portion of the eye. What has heen named albuginea cannot properly be conlidered as a coat of the eye, being in fact nothing more than the tendons of the ftraight mufcles fpread over fome parts of the fclerotica.

The immediate tunics of the eye, which are to be demonffrated when its partial coverings, and all the other parts wich which it is furrounded, are removed, are the fclerotica, cornea, choroides, and retina.

The folerotica, which is the exterior coat, is every where
(z) It is obfervable, that the eye-brows are peculiar to the human fpecies.
(A) It fometimes happens, that this very pcllucid fluid, which moiftens the eye, being poured out through the excretory ducts of the lachrymal gland fafter than it can be carried off through the puncta, trickles down the cheek, and is then frictly and properly called tears.
(B) When the ductus ad nares becomes obfrncted in confequence of difeafe, the tears are no longer able to pafs into the nofrils; the facculus laclirymalis becomes diftended; and inflammation, and fometimes ulecration, taking place, conftitute the difcafe called fifula lachrymalis.
$\underbrace{\begin{array}{c}\text { Of the } \\ \text { Senfes. }\end{array}}$
where white and opaque, and is joined at its antcrior edge to another, which has more convesity than any other part of the globe, and being exceedingly tranfparent is called cornea (c). Thefe two parts are perfectly different in their ftructure; fo that fome anatomifts fuppote them to be as diftinet from each other as the glafs of a watch is trom the cafe into which it is fixed. The fclerotica is of a compact fibrous ftructure; the cornea, oll the other hand, is compofed of a great number of laminx united by cellular membrane. By macerating them in boiling water, they do not feparate from each other, as fome writers have afferred; but the cornea foon foftens, and becomes of a glutinous confiftence.

The ancients fuppofed the felerotica to be a continuation of the dura mater. Morgagni and fomc other modern writers are of the fame opinion ; but this point is difputed by Wintiow, Haller, Zin, and others. The tuuth feems to be, that the flerotica, though not a production of the dura mater, adheres intimately to that membrane.

The choroides is fo called becaufe it is furnifhed with a great number of veffels. It has likewife been named zeva, on account of its refemblance 10 a grape. Many modern anatomical writers liave confidered it as a production of the pia mater. This was likewife the opinion of the ancients; but the ftrength and thicknefs of the choroides, when compared with the delicate ftructure of the pia mater, are fufficient proofs of their being two diftinet membranes.

The choroides has of late generally been defcribed as confifting of two lamine ; the intuermoft of which has been named after Ruyfch, who firft defcribed it. It is certain, however, that Ruyfch's diftinetion is ill founded, at leaft with refpect to the human eye, in which we are unable to demonftrate any fuch ftructure, although the tunica choroides of flcep and fome other quadrupeds may eafily be feparated into two layers.

The choroides adheres intimately to the fclerotica round the edge of the cornea; and at the place of this union, we may obferve a little whitifh arcola, named ligamentum ciliare, though it is not of a ligamentous nature.

They who fuppofe the choroides to be compofed of two lamin x, defcribe the external one as terminating in the ligancntum ciliare, and the internal one as extending farther to form the iris, which is the circle we are able to diftinguifh through the cornea: bat this part is of a very different fructure from the choroides; fo that fome late writers liave perlaps not improperly confidered the iris as a diftinct membrane. It derives its name from the variety of its colours, and is perforated in the middle. This perforation, which is called the pupil or fight of the eye, is clofed in the foetus by
a very thin vafcular membrane. This nembrana pupillaris commonly difappears about the fevcnth monill.
On the under fide of the iris we obferve many minute fibres, called ciliary proceffes, which pafs in radii or parallel lines from the circumference to the centre. The contrastion and dilatation of the pupil are fuppoled to depend on the action of thefe proceffes. Son:e have confidered them as mufcular, but they are not of an irritable nature; others have fuppofed thein to be filaments of nerves: but their real ftructure has never yet been clearly afcertained.

Befides thefe ciliary procefles, anatomifts ufually fpeak of the circular fibres of the iris, but no fuch feem to exift.

The poftcrior furface of the iris, the ciliary proceffes, and part of the tunica choroides, are covcred by a black mucus for the purpofes of accurale and diftinet vifion; but the mamer in which it is fecreted has not been determined.
Immediately under the turica choroides we find the third and inner coat, called the retina, whicli feems to be merely an expanfion of the pulpy fulbiance of the optic nerve, extending to the border of the cryftaline humour.

The greateft part of the globe of the eye, within thefe feveral tunics, is filled by a very tranfparent and gelatinous humour of confiderable confiftence, which, from its fuppofed refemblance to fufed glafs, is called the vitreous humour. It is invefted by a very fine and delicate membrane, called tunica vitrea, and fometimes arachnoides.-II is fuppofed to be compofed of two laminx; one of which dips into its fubftance, and by dividing the humour into cells adds to its firmncrs. The fore-part of the vitreous hamour is a littlc hollowed, to receive a very white and tranfparent fubtance of a firm texture, and of a lenticular and fomewhat convex flape, named the cryftaline bumour. It is included in a captula, which feems to be formed ly a feparation of the two laminæ of the tunica vitrea.

The fore-part of the eye is filled by a very thin and tranfparent fluid, named the aqueous inumour, which occupies all the fpace between the cryftalline and the prominent cornca.-The part of the choroides which is called the iris, and which comes forward to form the pupil, appears to be fufpended as it were in this humour, and has occafioned this portion of the eye to be diftinguifhed into two parts. One of thefe, which is the little fpace between the anterior furface of the cryftalline and the iris, is called the pofferior chamber; and the other, which is the fpace between the iris and the cornea, is called the anterior chamber of the eye (D). Both thefe fpaces are completely filled with the aqueous humour. (E).

The eye receives its arteries from the internal caro-
tid through the foramina optica; and its veins pafs through the foramina lacera, and empty themfelves into the lateral finufes. Some of the ramifications of thefe veffels appear on the inner furface of the iris, where they are feen to make very minute convolutions, which are fufficiently remarkable to be diftinguifhed by the name of circulus arteriofus, though perhaps improperly, as they are chiefly branches of veins.

The optic nerve paffes in at the pofterior part of the eye, in a confiderable trunk, to be expanded for the purpofes of vifion, of which it is now univerfally fuppofed to be the immediate feat. But Meffrs Mariotte and Mery contended, that the choroides is the feat of this fenfe; and the ancients fuppofed the cryftalline to be fo. Befides the optic, the eye receives branches from the third, fourth, fifth, and fixth pair of nerves.

The humours of the eye, together with the cornea, are calculated to refract and converge the rays of light in fuch a manner as to form at the bottom of the eye a diftinct image of the object we look at ; and the point where thefe rays meet is called the focus of the eye. On the retina, as in the camera obfcura, the object is painted in an inverted pofition; and it is only by habit that we are enabled to judge of its true fituation, and likewife of its diftance and magnitude. To
a young gentleman who was born blind, and who was couched by Mr Chofelden, every objeet (as he expreffed himfelf) feemed to touch his eyes as what he felt did his fkin; and he thought no objects fo agreeable as thofe which were fmooth and regular, although for fome time he could form no judginent of their flape, or guefs what it was in any of them that was pleafing to him.

In order to paint objects diftinctly on the retina, the cornea is required to have finch a degree of convexity, that the rays of light may be collected at a certain point, fo as to terminate exactly on the retina. If the cornea is too prominent, the rays, by u_{2} ierging too foon, will be united before they reach the retina, as is the cafe with near-fighted people or myopes; and on the contrary, if it is not fufficiently convex, the rays will not be perfectly united when they reach the backpart of the eye; and this happens to long-fighted people or prefoi, being found conftantly to take place as we approach to old age, when the eye gradually flattens (f). Thefe defeets are to be fupplied by means of glafles. He who has too prominent an eye, will find his vifion improved by means of a concave glafs; and upon the fame principles, a convex glafs will be found ufeful to a perfon whofe eye is naturally too flat.

EXPLANATION of PLATE XXX.

Figure 1. Shows the Lachrymal Canals, after the Common Teguments and Bones have been cut away.
a, The lachrymal gland. b, The two puncta lachrymalia, from which the two lachrymal canals proceed to c, The lachrymal fac. d, The large lachrymal dnet. e, Its opening into the nofe. f, The caruncula lachrymalis. g, The cye-ball.

Fig. 2. An interior View of the Coats and Humours of the Eye.
a a a a, The tunica fclerotica cut in four angles, and turned back. bbbb, The tunica choroides adhering to the infide of the fclerotica, and the ciliary veffels are feen paffing over-c c, The retina which covers the vitreous humour. d d, The ciliary proceffes, which were continued from the choroid coat. e e, The iris. f, The pupil.

Fig. 3. Shows the Optic Nerves, and Mufcles of the Eye.
a a, The two optic nerves before they meet. b, The two optic nerves conjoined. c, The right optic nerve. d, Mufculus attollens palpebræ fuperioris. e, Attollens oculi. f, Abductor. g g, Obliquus fuperior, or trochlearis. h, Adductor. i, The eye-ball.

Fig. 4. Shows the Eye-ball with its Mufcles.
a, The optic nerve. b, Mufculus trochlearis. c, Part of the os frontis, to which the trochlea or pully is fixed, throngh which,- $-d$, The tendons of the trochlearis paffes. e, Attollens oculi. f, Addactor oculi. g, Abductor oculi. h, Obliquus inferior. i, Part of the
fuperior maxillary bone to which its fixed. k, The eye-ball.

Fig. 5. Reprefents the Nerves and Mufcles of the Right Eye, after part of the Bones of the orbit have been cut away.

A, The eyc-ball. B, The lachrymal gland. C, Mufculus abductor oculi. D, Attollens. E, Levator palpebræ fuperioris. F, Depreffor oculi. G, Adductor. H, Obliquus fuperior, with its pully. I, Its infertion into the fclerotic coat. K, Part of the obliquas inferior. L, The anterior part of the os frontis cut. M, The crifta galli of the ethmoid bone. N, The pofterior part of the fphenoid bone. O, Tranfverfe fpinous procefs of the fphenoid bone. P, The carotid artery, denuded where it paffes throngh the bones. Q, The carotid artery within the cranium. R, The ocular artery.

Nerves.-a a, The optic nerve. b, The third pair.-c, Its joining with a branch of the firft branch of the fifth pair, to form 1,-The lenticular ganglion, which fends off the ciliary nerves, d. e e, The fourth pair. f, The trunk of the fifth pair. g, The firft branch of the fifth pair, named ophthalmic. h, The frontal branch of it. i, Its ciliary branches, along with which the nafal twig is fent to the nofe. k , Its branch to the lachrymal gland. 1 , The lenticnlar ganglion. m, The fecond branch of the fifth pair, named fuperior maxillary. n, The third branch of the fifth pair, named inferior maxillary. o, The fixth pair
from its bed in the vitreons humour. In this operation the cornea is perforated, and the aqneous humour efcapes out of the eye, but it is conftantly renewed again in a very fhort time. The manner, however, in which it is fecreted, has not yet been determined.
(F) Upon this principle, they who in their yonth are near-fighted may expect to fec better as they advance in life, as their eyes gradually become more flat.

Part VI.
 $\begin{array}{lllllll}\mathrm{A} & \mathrm{N} & \mathrm{A} & \mathrm{T} & \mathrm{O} & \mathrm{M} & \mathrm{Y} .\end{array}$

of nerves, -which fends off p, The beginning of the great fympathetic. q, The remainder of the fixth pair, fent on c , The abductor oculi.

Fig. 6. Reprefents the head of a youth, where the upper part of the cranium is fawed off,-to fhow the upper part of the brain, covered by the pia mater, the veffels of which are minutely filled with wax.

AA, The cut edges of the upper part of the cranium. B, The two tables and intermediate diplcë. BB , The two hemifpheres of the cerebrum. CC, The incifure made by the falx. D, Part of the tentorium cerebello fuper expanfum. E, part of the falx, which is fixed to the crifta galli.

Fig. 7. Reprefents the parts of the External Ear, with the Parotid Gland and its Duct.
a a, The helix. b, The antihelix. c, The antitragus. d, The tragus. e, The lobe of the ear. f, The cavitas innominata. g, The fcapha. h, The concha. ii, The parotid gland. k, A lymphatic gland, which is often found before the tragus. 1, The duct of the parotid gland. m, Its opening into the mouth.

Fig. 8. A view of the pofterior part of the external
ear, meatus auditorius, tympanum, with the fmall bones, and Euftachian tube of the right fide.
a, The back part of the meatus, with the fmall ceruminous glands. b, The incus. c, Malleus. d, The chorda tympani. e, Membrana tympani. f, The Euftachian tube. g, Its mouth from the fauces.

Fig. 9. Reprefents the anterior part of the right external ear, the cavity of the tympanum-its fmall bones, cochlea, and femicircular canals.
a, The malleus. b, Incus with its long leg, refting upon the ftapes. c, Membrana tympani. d, e, The Euftachian tube, covered by part of - $f f$, The mufculus circumflexus palati. $\mathbf{J}, 2,3$, The three femicircular canals. 4, The veftible. 5, The cochlea. 6 , The portio mollis of the feventh pair of nerves.

Fig. io. Shows the mufcles which compofe the flefly fubtance of the Tongue.
a a, The tip of the tongue, with fome of the papillix minimx. b, The root of the tongue. c, Part of the membrane of the tongue, which covered the epiglottis. dd, Part of the mufculus hyo.gloffus. e, The lingualis. f, Genio-gloffus. gg, Part of the fylo-gloffus.

Med. Hist oZ 270 F997c 1790
(.)

* * ARMY * *

MEDICAL LIBRARY
Cleveland Branch

[^0]: (B) Mr Scheele has lately difcovered that bones contain the phofphoric acid united with calcareous earth; and that to this combination they owe their firmnefs.
 (c) In his Anat. of em nov. invent. illuffrat. he defcribes four kinds of thefe claviculi or mails, viz. the per pendicular, oblique, headed, and crooked.

[^1]: (c) The lambdoidal future is fometimes very irregular, being compofed of many fmall futures, which furround fo many little bones called offa triquetra, though perhaps improperly, as they are not always triangular.

[^2]: (1) The motions of proaztion and fupination may be eafily deferihed. If the palm of the hand, for infance, is placed oa the furfacc of a table, the hand may be faid to be in a fate of pronation; but if the bach part of the hand is turned somade the table, the hand will be then in a ftate of fupination.

